Specifications and Requirements for Electric Installations

Effective August 2015
Dig Safely. New York
Call 811 before you dig
Directory of Company Offices

Upper Hudson Division

Catskill Office
7964 Route 9W
Catskill, NY 12414

Kingston Office
2001 Rt. 9W
Lake Katrine, NY 12449

Mid-Hudson Division

Poughkeepsie Office
284 South Avenue
Poughkeepsie, NY 12601

Lower Hudson Division

Fishkill Office
25 Central Hudson Way
Fishkill, NY 12524

Newburgh Office
610 Little Britain Road
New Windsor, NY 12553

Customer Service

(845) 452-2700
(800) 527-2714

Natural Gas Odor Hotline

(800) 942-8274
Table of Contents

1. INTRODUCTION ... 1
 1.1 PURPOSE ... 1
 1.2 SCOPE .. 1
 1.3 RATE SCHEDULES ... 1
 1.4 COOPERATION .. 1
 1.5 CODES ... 1
 1.6 RESPONSIBILITY ... 1
 1.7 ELECTRICAL INSPECTIONS .. 2
 1.7.1 Requirement.. 2
 1.7.2 Certificate of Compliance (Permit) .. 2
 1.7.3 Company Specifications and Other Applicable Codes .. 2
 1.8 WIRING ADEQUACY ... 2
 1.9 BUILDING INSULATION REQUIREMENTS ... 2
 1.10 POWER QUALITY .. 2
 1.11 REVISIONS ... 3

2. DEFINITIONS ... 4

3. GENERAL INFORMATION ... 7
 3.1 APPLICATION FOR NEW SERVICE OR SERVICE UPGRADE ... 7
 3.1.1 Accepted Format .. 7
 3.1.2 Required Lead-Time .. 7
 3.2 PAYMENT OF FEES AND/OR DEPOSITS ... 7
 3.3 ACCESS .. 7
 3.4 CHARACTER OF ELECTRIC SERVICE .. 7
 3.4.1 Responsibility .. 7
 3.4.2 Customer Requirement ... 7
 3.5 SECONDARY VOLTAGES AVAILABLE .. 8
 3.6 SERVICE ABOVE 600 VOLTS ... 8
 3.7 VOLTAGES NO LONGER STANDARD ... 8
 3.8 TEMPORARY SERVICE .. 8
 3.8.1 General .. 8
 3.8.2 Installation Requirements ... 8
 3.8.3 Cost .. 9
 3.8.4 Emergencies and Inspection Requirement .. 9
 3.8.5 Connections to Movable Structures ... 9
 3.9 INCREASE IN SERVICE ... 9
 3.10 LOAD BALANCING ... 9
 3.11 RELOCATIONS AND REPAIRS .. 9
 3.12 UNAUTHORIZED ATTACHMENTS .. 9
 3.13 OBJECTIONABLE EQUIPMENT ... 10
 3.14 WORK AUTHORIZATION ... 10

4. SERVICES .. 11
 4.1 GENERAL ... 11
 4.1.1 Number of Services ... 11
 4.1.2 Route of Service ... 11
 4.1.3 Easements and Rights-of-Way .. 11
 4.2 OVERHEAD SERVICE FROM OVERHEAD LINES ... 11
 4.2.1 Responsibility ... 11
4.2.2 Minimum Size .. 11
4.2.3 Service Attachment ... 12
4.2.4 Clearances .. 12
4.2.5 Service or Riser Masts ... 12
4.2.6 Weatherhead .. 13
4.2.7 Load Center Metering .. 13
4.2.8 Contractor Disconnect/Reconnect Program 13
 4.2.8.1 General ... 13
 4.2.8.2 Application Requirements 13
 4.2.8.3 Installation Requirements 13
4.3 UNDERGROUND SERVICE BELOW 600 VOLTS FROM OVERHEAD LINES .. 14
 4.3.1 Responsibility .. 14
 4.3.1.1 Adequate Notice ... 14
 4.3.1.2 Customer Request .. 14
 4.3.2 Minimum Size ... 14
 4.3.3 Cable & Cover Requirements 14
 4.3.4 Backfill ... 15
 4.3.5 Riser Pole .. 15
 4.3.5.1 Requirements and Specifications 15
 4.3.5.2 Grounding .. 15
 4.3.5.3 Additional Installation Requirements 16
 4.3.6 Conduit to Outdoor Meter 16
 4.3.7 Conduit into Building .. 16
4.4 UNDERGROUND SERVICE ABOVE 600 VOLTS FROM OVERHEAD LINES .. 16
 4.4.1 Responsibility .. 16
 4.4.2 Required Notice .. 16
4.5 UNDERGROUND SERVICE FROM UNDERGROUND LINES ... 16
 4.5.1 City Networks .. 16
 4.5.1.1 Point of Termination 17
 4.5.1.2 Conduit and Duct .. 17
 4.5.1.3 Cable .. 17
 4.5.2 URD Subdivisions ... 17
 4.5.2.1 General ... 17
 4.5.2.2 Application Requirements 17
 4.5.2.3 Responsibility and Installation Requirements .. 18
 4.5.2.4 Additional Requirements 18
 4.5.3 Non-Residential Complexes 19
 4.5.3.1 General ... 19
 4.5.3.2 Application Requirements 19
4.6 CUSTOMER-OWNED OVERHEAD SERVICE CONNECTIONS ... 19
 4.6.1 General ... 19
 4.6.2 Location .. 20
 4.6.3 Tree Trimming .. 20
 4.6.4 Pole Specifications ... 20
 4.6.5 Clearances .. 21
 4.6.6 Anchors and Guys ... 21
 4.6.7 Type of Construction ... 21
 4.6.8 Conductors and Accessories 21
 4.6.9 Transformers ... 22
 4.6.10 Lightning Arresters and Grounding 22
 4.6.11 Secondary Voltage Construction 22
 4.6.12 Excavation and Blasting 22
4.7 CUSTOMER-OWNED UNDERGROUND PRIMARY SERVICE CONNECTIONS .. 22
 4.7.1 General ... 22
 4.7.2 Location .. 23
 4.7.3 Excavation and Backfill 23
 4.7.4 Primary Cable Installations 23
Table of Contents

4.7.5 Riser Pole and Associated Terminations ... 23
4.7.6 Transformers ... 24
4.7.7 Trenching .. 24

5. SERVICE EQUIPMENT .. 25

5.1 GENERAL ... 25
5.2 ADDITIONAL REQUIREMENTS .. 25
5.3 LOCATION OF SERVICE EQUIPMENT AND WORKING SPACE 25
5.4 LOCATION OF MAIN DISCONNECT .. 26
5.5 SERVICE BELOW 600 VOLTS .. 26
5.5.1 Equipment Rated below 400 Amperes ... 26
5.5.2 Equipment Rated at or above 400 Amperes ... 26
5.5.3 Network Areas or Service at 277/480 Volts or 480 Volt Delta with Self-Contained Metering ... 27
5.6 SERVICE ABOVE 600 VOLTS .. 27
5.6.1 Location .. 27
5.6.2 Application Requirements .. 27

6. GROUNDING .. 28

6.1 GENERAL ... 28
6.2 GROUNDING ELECTRODE CONDUCTOR ... 28
6.3 GROUNDING ELECTRODES .. 28
6.4 COMMUNICATIONS EQUIPMENT .. 28
6.5 GROUNDING OF STANDBY AC GENERATING SOURCES 28
6.5.1 Separately Derived Systems .. 28
6.5.2 Non-Separately Derived Systems .. 28
6.6 GROUNDING OF INTERCONNECTED ELECTRIC POWER PRODUCTION SOURCES ... 29
6.6.1 General ... 29
6.6.2 Generators .. 29
6.6.3 Solar Photovoltaic Systems .. 29
6.6.4 Fuel Cell Systems ... 29

7. METERING .. 30

7.1 GENERAL ... 30
7.1.1 Responsibility .. 30
7.1.2 Meter Service Provider .. 30
7.1.3 Meter Type .. 30
7.1.4 Restrictions ... 30
7.2 METER LOCATION ... 30
7.2.1 Responsibility ... 30
7.2.2 Working Space Requirement ... 30
7.2.3 Outdoor Meters .. 31
7.2.4 Indoor Meters ... 31
7.2.5 Electric and Gas Meter Separation ... 31
7.2.6 Restriction ... 31
7.3 METER INSTALLATIONS .. 31
7.4 MULTIPLE METER INSTALLATIONS .. 31
7.4.1 General ... 31
7.4.2 Company Approval .. 31
7.4.3 Installation Requirements .. 31
7.4.4 Identification Requirement ... 32
7.5 GROUNDING AND BONDING METERING EQUIPMENT 32
7.5.1 General ... 32
7.5.2 Remote Metering Equipment ... 32
7.6 METER BOARDS AND PANELS .. 32
7.7 METER SOCKET REQUIREMENTS .. 32
7.7.1 General ... 32
7.7.2 UL Listing ... 33
Table of Contents

- 7.7.3 Meter By-pass .. 33
- 7.7.4 120/208Y/120V Network Service .. 33
- 7.7.5 320A Self-Contained Metering .. 33
- 7.7.5.1 General ... 33
- 7.7.5.2 Additional Requirements .. 33
- 7.7.6 Poly-phase Metering .. 33
- 7.8 Meter Relocation .. 34
- 7.9 Shared Meter Law .. 34
- 7.10 Load Control Pulses .. 35
- 7.11 Unauthorized Use .. 35

8. COMPANY TRANSFORMER INSTALLATIONS ON CUSTOMER PREMISES ... 36
- 8.1 General .. 36
- 8.2 Responsibility .. 36
- 8.3 Suitable Location Requirement .. 36
- 8.4 Transformer Vaults .. 36
- 8.4.1 General ... 36
- 8.4.2 Responsibility .. 36
- 8.4.3 Restrictions ... 37
- 8.4.4 Access .. 37

9. MANUFACTURED HOMES, MOBILE HOMES AND RECREATIONAL VEHICLES ... 38
- 9.1 General .. 38
- 9.1.1 Advanced Notice Requirement ... 38
- 9.1.2 Character of Service .. 38
- 9.1.3 Installation Requirements .. 38
- 9.1.4 Manufactured Homes .. 38
- 9.2 Individual Mobile Homes .. 38
- 9.2.1 General ... 38
- 9.2.2 Overhead Service Connection ... 39
- 9.2.3 Underground Service Connection ... 39
- 9.3 Mobile Homes in Parks Served from Overhead Lines ... 39
- 9.3.1 Responsibility .. 39
- 9.3.2 Character of Service .. 39
- 9.4 Mobile Homes in Parks Served from Underground Lines ... 39
- 9.5 Recreational Vehicles .. 39

10. DISTURBANCES .. 40
- 10.1 General .. 40
- 10.2 Motors ... 40
- 10.3 Harmonics ... 40

11. MOTORS AND CONTROLLERS .. 41
- 11.1 General ... 41
- 11.2 Single-Phase Motors .. 41
- 11.3 Protection .. 41
- 11.4 Zero Voltage Release .. 41
- 11.5 Motor Starting Requirements ... 41

12. SPECIAL EQUIPMENT .. 43
- 12.1 Computers, Solid-State Devices or Other Voltage-Sensitive Equipment ... 43
- 12.2 Automatic Reclosing ... 43
- 12.3 Electric Fences .. 43
- 12.4 Swimming Pools .. 43
- 12.5 Lightning Protection .. 44
- 12.6 Customer-Installed Capacitors ... 44
- 12.7 Carrier Current Systems ... 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8</td>
<td>Radio, Television and Cellular Transmitting Equipment</td>
<td>44</td>
</tr>
<tr>
<td>13.</td>
<td>Customer-Owned Electric Sources Including Generators</td>
<td>45</td>
</tr>
<tr>
<td>13.1</td>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>13.2</td>
<td>Customer-Owned Standby Generators</td>
<td>45</td>
</tr>
<tr>
<td>13.3</td>
<td>Portable Standby Generators</td>
<td>45</td>
</tr>
<tr>
<td>13.4</td>
<td>Transfer Systems</td>
<td>45</td>
</tr>
<tr>
<td>13.5</td>
<td>Customer-Owned Interconnected Generators</td>
<td>45</td>
</tr>
<tr>
<td>13.5.1</td>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Approval Procedures</td>
<td>46</td>
</tr>
<tr>
<td>13.5.2.1</td>
<td>Generators of Two (2) MW or Less</td>
<td>46</td>
</tr>
<tr>
<td>13.5.2.2</td>
<td>Generators Greater Than Two (2) MW</td>
<td>46</td>
</tr>
<tr>
<td>13.5.2.3</td>
<td>Net Metering</td>
<td>46</td>
</tr>
<tr>
<td>14.</td>
<td>Index to Specifications and Drawings</td>
<td>47</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Purpose

The purpose of this book is to present information, specifications, and requirements pertaining to the delivery of electricity by Central Hudson Gas & Electric Corporation (the Company). Adherence to the specifications and requirements set forth herein will protect the interests of the Customer and the Company and will result in installations that comply with codes and regulations necessary for safe, adequate and satisfactory service.

1.2 Scope

The information, specifications and requirements compiled in this book pertain to the equipment connecting the Customer's and the Company’s electric systems and to other subjects associated with the delivery of electricity that are of mutual interest to the Customer and the Company. It should be noted that this is not a complete set of specifications governing the installation of electrical wiring and equipment. It is the Customer’s responsibility to research and comply with any other applicable code or standard pertaining to the installation of electrical wiring and equipment.

1.3 Rate Schedules

Electric tariffs and the rules and regulations pertaining thereto are on file with the New York State Public Service Commission (PSC) and are available for download from the Company’s website at www.CentralHudson.com/rates/.

1.4 Cooperation

It is the desire of the Company to provide and maintain safe and reliable electric service in a courteous and efficient manner. The submittal of preliminary information to the Company early in the development of plans leading to new or increased electric service will aid in optimum scheduling of the work of both the Company and the Customer. Strict and complete adherence to the specifications and requirements in this book will expedite the delivery of the electric service.

1.5 Codes

These specifications supplement the National Electrical Code (NEC) and the National Electrical Safety Code (NESC). They are not a substitute for these codes or for any other applicable codes. To provide for safe installations, the Company requires that the Customer's wiring installations comply with these specifications and all other applicable codes. Service may be denied if these specifications and all other applicable codes are not met. The Company accepts no liability for direct or indirect damages resulting from the Company’s refusal to energize a service or from the Company terminating a service that does not meet these specifications and all other applicable codes.

1.6 Responsibility

The Customer has the responsibility for maintaining customer wiring and equipment in a safe operating condition. Any significant changes in connected loads shall be reported to the Company immediately. The Company does not accept any responsibility for the Customer's wiring and equipment.
1.7 Electrical Inspections

1.7.1 Requirement

To protect the Customer’s interests, as well as its own, the Company requires the applicant to furnish evidence of the safe condition of the wiring after the work is completed and before energizing the service to a new installation or to any installation which has been de-energized for more than two (2) years or has been subject to fire damage.

1.7.2 Certificate of Compliance (Permit)

Evidence shall be in the form of a certificate of compliance from the authority having jurisdiction (see Section 2 - Definitions). Also, when wiring is altered or extended, an approval or certificate of compliance is required. Application with the authority having jurisdiction should be made as far as possible in advance. Unsafe wiring will be refused service.

1.7.3 Company Specifications and Other Applicable Codes

Inspections shall confirm compliance with the NEC, any applicable building codes, and any Company specification that may supersede portions of the aforementioned codes. The Company reserves the right to challenge the inspection when Company personnel observe deficiencies in the installation at any time prior to energizing the installation.

1.8 Wiring Adequacy

Compliance with the NEC and proper operation and maintenance procedures will result in an installation essentially free from hazard. However, the planning and design of the initial installation should also provide for the desired level of performance (i.e., reliability, efficiency, and convenience) and for future expansion/alteration of electricity use.

1.9 Building Insulation Requirements

All new dwellings in New York State for which an application for a building permit was made and plans were filed on or after January 1, 1979, and all new dwellings within the State for which construction was begun on or after January 1, 1979, will not be eligible for electric service unless these dwellings comply with the New York State Energy Conservation Construction Code. Compliance details may be obtained from Company tariffs.

1.10 Power Quality

The Company endeavors to provide continuous electric service within the following voltage limits (American National Standards Institute 84.1-2011):

Under normal conditions and for 120 V – 600 V services, the targeted regulation is ± 5% at the service entrance.

Under normal conditions and for services greater than 600 V, the targeted regulation is – 2.5% to + 5% at the service entrance.
However, voltages outside of these limits may occur, although infrequently, and from time to time service may be interrupted due to circumstances beyond the Company’s control. This service interruption may include full or partial loss of voltage or phases. The planning and design of the Customer’s installations should recognize the possibility of such interruptions. The Company shall not be liable for any damages arising from these voltage irregularities, momentary interruptions, or de-energizing and re-energizing of electric service.

1.11 Revisions

These specifications will be revised or amended as necessary to protect the mutual interests of the Customer and the Company.

The latest edition of this book shall be used.
2. **DEFINITIONS**

- **approved** - Acceptable to the authority having jurisdiction.

- **authority having jurisdiction** - The organization, office, or individual responsible for approving equipment, materials, an installation, or a procedure.

- **bypass** - A device that shunts current around the meter, so the meter can be removed without interrupting service.

- **bonding (bonded)** - The permanent joining of metallic parts to form an electrically conductive path that ensures electrical continuity and the capacity to conduct safely any current likely to be imposed.

- **building** - A structure which stands alone or which is separated from adjoining structures by approved firewalls with all openings therein protected by approved fire doors.

- **cold sequence** – A meter sequence where a disconnecting device is located on the line side (before) the metering equipment.

- **Company** - Central Hudson Gas & Electric Corporation.

- **cost or expense** - Shall include all labor, material and other applicable charges, including overheads required for specified work to be performed by Company personnel.

- **current transformer** - A transformer whose secondary current is a precise fraction of its primary current. Using current transformers, high-current circuits can be measured with conventional meters. Abbreviation: CT.

- **Customer** - A present or prospective user of the Company’s electric service or agent thereof.

- **demand** - The average rate at which energy (measured in kilowatt-hours) is consumed during a specified interval of time. Demand is measured in kilowatts.

- **disconnecting means** – A device, or group of devices, or other means by which the conductors of a circuit can be disconnected from their source of supply.

- **ground** - The earth.

- **grounded (grounding)** – Connected (connecting) to ground or to a conductive body that extends to the ground connection.

- **grounding conductor** - A conductor used to connect equipment or the grounded circuit of a wiring system to a grounding electrode or electrodes.

- **guy** - A cable or brace that supports a mast or pole.

- **high leg** - In a four-wire delta service, the phase with a voltage higher than the other two phases.

- **hot sequence** – A meter sequence where no disconnecting device is located on the line side (before) the metering equipment.
listed - Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

manufactured home - A factory assembled structure or structures transportable and designed to be used as a dwelling unit with a permanent foundation acceptable to the local authority having jurisdiction.

meter socket - The mounting device consisting of meter jaws, connectors, and enclosure for receiving a socket-type meter.

mobile home - A factory-assembled structure equipped with the necessary service connections and made so as to be readily movable as a unit or units on its own running gear and designed to be used as a dwelling unit without a permanent foundation. The phrase "without a permanent foundation" indicates that the support system is constructed with the intent that the mobile home placed thereon will be moved from time to time.

NEMA - National Electrical Manufacturers Association.

NESC - National Electrical Safety Code. National regulations for the installation, operation, and maintenance of electric supply and communication lines. Published by the Institute of Electrical and Electronics Engineers (IEEE). Current edition of the NEC adopted by the company is IEEE C2-2012. NESC rules apply to equipment on the Company’s side of the point of delivery.

photovoltaic (PV) system – The total components and sub-system that, in combination, convert solar energy into electric energy suitable for connection to a utilization load.

point of attachment - The point at which the Company’s service conductors are mechanically attached to the Customer’s premises.

point of delivery (service point) - The point of connection between the Company’s facilities and the premises wiring (see Figure 2).

premise – Discrete, contiguous, real property under the Customer’s control through ownership or lease.

primary voltage - The voltage at which electricity is delivered from substations to distribution transformers. Primary voltage is typically greater than 600 volts.

recreational vehicle - A vehicular-type unit primarily designed for temporary living quarters for recreational, camping, or travel use, which either has its own motive power or is mounted on or drawn by another vehicle. These include: travel trailer, camping trailer, truck camper, and motor home.

RMC – Rigid metal conduit

secondary voltage - The voltage at which electricity is delivered from distribution transformer to the Customer. Secondary voltage is typically less than 600 volts.
separately derived system – An electrical source, other than a service, having no direct connection(s) to circuit conductors of any other electrical source other than those established by grounding and bonding connections.

service - The conductors and equipment for delivering electrical energy from the Company’s system to the Customer’s wiring system (see Figure 1).

service conductors – The conductors from the service point to the service disconnecting means (see Figure 1).

service conductors, overhead – The overhead conductors between the service point and the first point of connection to the service-entrance conductors at the building or other structure (see Figure 1).

service conductors, underground – The underground conductors between the service point and the first point of connection to the service-entrance conductors in a terminal box, meter, or other enclosure, inside or outside the building wall (see Figure 1).

service drop - The overhead conductors between the Company’s system and the service point (see Figures 1 and 2).

service-entrance conductors, overhead system - The service conductors between the terminals of the service equipment and a point usually outside the building, clear of building walls, where joined by tap or splice to the service drop or overhead service conductors (see Figures 1 and 2).

service-entrance conductors, underground system - The service conductors between the terminals of the service equipment and the point of connection to the service lateral or underground service conductors (see Figures 1 and 2).

service equipment - The necessary equipment, usually consisting of a circuit breaker(s) or a switch(es) and fuse(s), and their accessories connected to the load end of service conductors to a building, or other structure, or an otherwise designated area, and are intended to constitute the main control and cutoff of the supply.

service lateral – The underground conductors between the Company’s system and service point (see Figures 1 and 2).

service point (point of delivery) - The point of connection between the Company’s facilities and the premises wiring (see Figures 1 and 2).

temporary service - Service to be used for a limited time (not to exceed 90 days, except for construction projects) for construction, exhibits, decorative lighting or similar purposes, or service to non-permanent structures (see Section 3.8 and Figures 3 and 4).

UL - Underwriters Laboratories. An independent product-testing and certification organization.

URD - Underground Residential Distribution. Describes placement below ground of the electric distribution system in residential developments.

vault - An equipment enclosure installed below grade or within a building.
3. GENERAL INFORMATION

3.1 Application for New Service or Service Upgrade

3.1.1 Accepted Format

Application for new service or service upgrade shall be made by email (newbuisnessdesk@cenhud.com), online application, or mail. Service request forms must be filed with the Company regarding proposed electrical installations. Applications for service can be found on the Company’s web site at http://www.centralhudson.com/workingwithus/newservicerequest.aspx.

3.1.2 Required Lead-Time

Application for new service or service upgrade should be made as far as possible in advance of the date service is required. Additional lead-time may be necessary to gain additional third-party approvals such as permits or rights-of-way.

3.2 Payment of Fees and/or Deposits

If the Company has been contracted to perform work on Customer property or if previously billed amounts are outstanding, a security deposit or payment arrangements may be required as a condition for service.

3.3 Access

In accepting service, the Customer grants to identified Company employees and agents the right of access to Customer's premises at all reasonable times for such purposes as the reading of meters, inspection of meters, or installing, operating, maintaining, disconnecting and removing any and all property belonging to the Company. Company employees authorized to visit Customer premises are furnished with an identification card, which they will show upon request.

3.4 Character of Electric Service

3.4.1 Responsibility

The Company will designate the character of service, meter location and the point of attachment. The service voltage and the number of phases and wires will depend upon available lines, the Customer's location, and the size and nature of the proposed service. All types of systems are not available at all locations. Available voltages and characteristics of service are normally considered to be those voltages and types of service that are located near the Customer's premises. Generally, only one service voltage will be available to a particular location.

3.4.2 Customer Requirement

The Customer shall inquire of the Company as to the type of service to be supplied prior to the purchase of electrical equipment or before proceeding with any wiring installation.
3.5 Secondary Voltages Available

All new services will be 60 Hertz, single-phase or three-phase alternating current designated by the Company. To serve loads, regardless of application (i.e., residential, commercial, and industrial), one of the secondary voltage services listed in Table 3.5 will be delivered as designated solely by the Company. For higher voltage service, the Company will solely designate the type of service based on the location of the Customer and the size and character of the proposed load.

<table>
<thead>
<tr>
<th>Phase(s)</th>
<th>No. of Wires</th>
<th>Nominal Voltage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>120/240V</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>120/208V</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>120/208V</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>120/240V</td>
<td>3,4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>277/480V</td>
<td>3,5</td>
</tr>
</tbody>
</table>

*Notes:
1. Normally will not be supplied for demand loads exceeding 50 kW.
2. Principally for demand loads not exceeding 20 kW.
3. Normally will not be made available for residential service.
4. Normally will not be supplied where 120/208V service can be made available.
5. Normally will be supplied only for demand loads in excess of 75 kW.

3.6 Service Above 600 Volts

Service voltages above 600 volts will be supplied where conditions warrant. It is particularly important that the Company be consulted in these cases. The Company will designate the type of service based on the location, size and nature of the proposed load, and its relation to the Company’s facilities.

3.7 Voltages No Longer Standard

Customers who take service at a non-standard voltage are requested to consult with the Company whenever increased usage is planned.

3.8 Temporary Service

3.8.1 General

The Company provides temporary electric service for construction purposes, non-permanent usage, or other non-recurring uses.

3.8.2 Installation Requirements

The Customer shall provide substantial and adequate support for temporary service (see Figures 3 and 4). The temporary service equipment and wiring shall be installed and inspected in the same manner as required for permanent installations.
3.8.3 Cost

The entire cost of installing and removing the temporary service facilities is the responsibility of the Customer. These temporary service facilities may include a line extension, a service lateral, the installation of transformers and meter facilities, and other work by the Company.

3.8.4 Emergencies and Inspection Requirement

When permanent electric service is reconnected due to an emergency repair, the permanent service shall be re-certified according to these specifications by the authority having jurisdiction within ten (10) calendar days. A ten (10) calendar day waiver can be obtained for emergency reconnections at the discretion of the Company. The service must be re-certified with a new electrical inspection by a certified agency while the waiver is in effect and the Customer holds the Company harmless of any liability while the waiver is active.

3.8.5 Connections to Movable Structures

No direct connection shall be made between the Company’s system and movable structures (construction trailers, mobile homes, etc.). All movable structures shall have a service pedestal or Customer owned pole installed for the metering and service equipment (see Figures 4 and 36).

3.9 Increase in Service

The Customer shall provide the Company reasonably advanced, written notice of any proposed increase in service required. This notice shall indicate the size and character of service and the expected duration of time the increased service will be required.

3.10 Load Balancing

The Customer shall balance the load so as to maintain, as nearly as is reasonably possible, equal current in each of the line conductors at the point of delivery. The current in any line conductor shall not exceed the average of the currents in all line conductors by more than five percent.

3.11 Relocations and Rebuilds

When a service connection must be relocated or rebuilt by Order of a Public Authority, the Company will relocate or rebuild that portion of the service connection, which is owned by the Company. The Customer is responsible for relocating or rebuilding that portion of the service connection owned by the Customer. When a service connection is relocated or rebuilt at the Customer’s request, the Customer shall pay the cost of the relocation or rebuild.

3.12 Unauthorized Attachments

The Company prohibits all unauthorized attachments to its poles, equipment, or property. Examples of unauthorized attachments include but are not limited to: flags, banners, signs, clotheslines, antennas, sports equipment, lighting fixtures, etc. The Company also forbids the use of its poles for placards, political posters or any advertising matter. The Company removes all such unauthorized attachments or installations without notice and may prosecute any such trespass.
3.13 Objectionable Equipment

The Company reserves the right to discontinue service where the Customer’s equipment or its operation is deemed to be unsafe or results in objectionable effects upon, or interference with the operation of facilities of the Company or its Customers, or of another public service company. Reconnection of service will occur after the Customer has made the required corrections. The cost of these corrections shall be the responsibility of the Customer (see also Section 10).

3.14 Work Authorization

The Company prohibits any work by unauthorized personnel on its facilities.
4. SERVICES

4.1 General

4.1.1 Number of Services

Normally, only one (1) service will be made available to a Customer's building. Exceptions require Company approval prior to design and installation and must be in accordance with the NEC section 230.2 and applicable municipal codes.

4.1.2 Route of Service

The route of the service and the type of construction will be determined by the Company after taking into consideration the location, size and nature of the proposed load and its relation to Company facilities. Services will not be run from building to building, over buildings, or over public swimming pools.

4.1.3 Easements and Rights-of-Way

Easements or rights-of-way may be required, at Customer expense, to give the Company access to the metering/service installation and equipment for the purpose of connecting/energizing the service and for other purposes necessary for the delivery of service.

4.2 Overhead Service from Overhead Lines

4.2.1 Responsibility

The Company will install, own, and maintain all overhead service drops to the Customer’s point of attachment (see Figure 2). When the line on private property exceeds the allowance as provided in the Company’s filed tariff, the Customer will be required to install, own, and maintain additional service poles, wires, cable, and equipment as applicable.

Any poles required for clearance over a highway will be provided by the Company, unless such poles are required to address clearance issues resulting from either the terrain of a Customer's property, a Customer's request for a particular routing of service, or where the service drop exceeds the allowance as provided in the Company’s filed tariff. All wires and cables from the point of attachment on the first Customer pole to the Customer's premises will be installed, owned and maintained by the Customer.

Any portion of the service to be provided by the Customer shall be installed in accordance with these specifications.

4.2.2 Minimum Size

The minimum overhead service entrance and service equipment shall be single-phase, three-wire, 100 amperes, except where specifically approved by the Company for special conditions/purposes.
4.2.3 Service Attachment

The Customer shall furnish and install a suitable attachment for the service drop to be securely bolted at the point designated by the Company. Thru-bolt (one point racks) are required. Screw-in porcelain insulators are not allowed. The point of attachment will usually be located at the section of the building closest to the pole from which the service is installed (see Figure 5).

4.2.4 Clearances

The vertical clearances of all service drop conductors, measured at the point and condition of maximum conductor sag, shall meet the requirements of the NEC, including clearance above roofs, from ground, from building openings (see Figure 6), and from private swimming pools (see Figure 7). No overhead lines are allowed within twenty (20) feet horizontally of public swimming pools. The Company recommends that no overhead lines are installed within twenty (20) feet horizontally of private swimming pools as well. Normally, ground clearance can be attained with a point of attachment of not less than 18 feet and not more than 25 feet above grade.

Conductors feeding traffic signals shall be in compliance with the National Electrical Safety Code regarding clearance from Company conductors.

4.2.5 Service or Riser Masts

Where the building is too low to obtain proper clearances, the Customer shall install an appropriate service or riser mast (see Figure 8). Where a service mast is used for the support of service-drop conductors, it shall be of adequate strength to withstand safely the strain imposed by the service drop. The service mast shall be galvanized rigid steel conduit and comply with the following bracing requirements:

<table>
<thead>
<tr>
<th>Service Rating</th>
<th>Rigid Galvanized Steel Riser Mast Bracing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Unbraced Height from Roof to Attachment Bracket</td>
</tr>
<tr>
<td></td>
<td>Rigid Galvanized Steel Riser Mast Nominal Diameter Size</td>
</tr>
<tr>
<td>2 inch</td>
<td>2-1/2 inch</td>
</tr>
<tr>
<td><200A</td>
<td>24 inches</td>
</tr>
<tr>
<td>200A</td>
<td>Bracing Required</td>
</tr>
<tr>
<td>400A</td>
<td></td>
</tr>
</tbody>
</table>

*Notes:
1. The service entrance conductors shall be secured to the building or structure just above the top of the service bracket in an approved weatherhead.
2. No additional attachments are permitted on the service riser.
3. The Company will not attach to a wood mast.
4. Service conductors' drip loop shall be in accordance with NEC section 230.24(A) (see Figure 8).
5. Guy wire shall be galvanized steel and minimum 6 strand x 19 AWG wire composition.

Alternatively, where the building is too low to obtain proper clearances, it is recommended that the Customer install an underground service connection, either to a Company-owned pole, or to a
Customer-owned pole, the location and type approved by the Company, and owned and maintained by the Customer.

4.2.6 Weatherhead

The weatherhead shall be located above and within twelve (12) inches of the point of attachment of the Company’s service drop. The installation shall conform to the requirements of the NEC. In addition, a minimum length of thirty-six (36) inches shall be provided in each service entrance conductor at the weatherhead for connection to the service drop.

4.2.7 Load Center Metering

On farms or other premises where buildings under a single occupancy or management will be supplied through one meter, it is recommended to install the meter (and a main disconnect) on a pole and distribute to several buildings directly from this meter pole. In such cases, the meter pole with necessary guys shall be installed, owned and maintained by the Customer. The Company shall be consulted in all cases for its requirements regarding the poles and guys (see Figures 9 and 10).

4.2.8 Contractor Disconnect/Reconnect Program

4.2.8.1 General

The Company may allow approved electrical contractors to disconnect and reconnect residential and commercial, single-phase, 120/240V overhead services with a single, self-contained meter.

The Company reserves the right to discontinue the program, all or in part, based on contractor performance and compliance with the rules and specifications contained herein.

Failure to comply with program rules and specifications on the part of an electrical contractor will result in revoking the contractor’s privilege to participate in the program.

Additional information may be obtained by contacting the Company.

4.2.8.2 Application Requirements

Participating electrical contractors shall attend Company training sessions as required.

Contractors shall follow the application for service requirements as outlined in Section 3.1.

4.2.8.3 Installation Requirements

Installations shall be completed in accordance with the NEC, applicable building codes, and the specifications contained herein.

Installations shall be inspected in accordance with Section 1.7.

Only Company-approved connectors shall be used. Connector specifications may be obtained by contacting the Company.
4.3 Underground Service below 600 Volts from Overhead Lines

4.3.1 Responsibility

4.3.1.1 Adequate Notice

The Customer shall consult with the Company before work is initiated so that the Company can designate the pole at which the underground service will originate and the location of the conduit on the pole. Natural gas piping, telephone and/or CATV lines may be installed in the same trench with the service lateral conductors if proper separation is maintained (see Figure 11 for cables in conduit and Figure 20 for direct buried cables).

4.3.1.2 Customer Request

When an underground service lateral is requested by the Customer, it shall be installed, owned and maintained by the Customer. The Company will reimburse the Customer in the amount of the cost of the overhead service drop (for new services only), which the Company would otherwise provide at its expense, based on the actual cost of similar service laterals recently installed by the Company. Any portion of the service to be provided by the Customer shall be installed in accordance with these specifications.

When a Company pole is on the opposite side of the highway from the Customer's premises, the Customer shall install all cable under the highway in approved conduit and in accordance with the requirements of the authorities having jurisdiction. Such cable shall run to the service point on the Customer’s side of the highway. The Customer shall install, own, and maintain the portion of cable installed under the highway to the service point.

As an alternative to installing the service lateral under the highway, a highway crossing pole, appropriate guy wire and anchor may be installed on the Customer’s side of the highway, preferably on the Customer’s property. The Customer will be responsible for the cost, ownership and maintenance of all highway-crossing poles required to provide underground service. The Company will provide an overhead service lateral to all highway-crossing poles, with the Customer’s overhead service allowance measured from the Company’s existing facilities.

For commercial services with a load of 400A or more, the Company may provide the highway crossing pole. This decision is at the discretion of the Company’s New Business Group and will be reviewed on a case-by-case basis.

4.3.2 Minimum Size

The minimum size of a residential underground service lateral shall be single-phase, three-wire, 200 amperes, except where specifically approved by the Company for special conditions/purposes.

4.3.3 Cable & Cover Requirements

Cable specifications for a 200A service lateral are shown in Figure 12. Specifications for other cable sizes are available upon request.

The use of double secondary service runs is strongly discouraged.
The single secondary service lateral cable, if approved for that purpose, may be buried directly in the ground. Where double sets are used, they must be installed in conduit from service pole to building wall. Conduit must be used for all services at the service pole and at the building wall. Cover requirements for direct buried cable, conduit and other raceways shall be in accordance with the NEC.

4.3.4 Backfill

Backfill that contains large rocks, paving or other construction materials, large or sharply angular substances, or corrosive material shall not be placed in an excavation where material may damage raceways, cables, or other substructures or prevent adequate compaction of fill or contribute to corrosion of raceways, cables, or other substructures. See Figure 11 for backfill requirements. Services will not be energized unless the service lateral conductors are backfilled with proper sand padding for the entire length of the trench.

4.3.5 Riser Pole

4.3.5.1 Requirements and Specifications

The Company determines the exact location of the pole. All risers shall be on the non-traffic side(s) of the pole and allow for conductor installation to Company space on pole without conflict from other utilities equipment/cables. Where the riser must be installed facing traffic due to existing obstacles, contact the Company prior to installation.

All primary risers shall be galvanized steel RMC. If the riser pole is Customer owned, the Customer shall provide, install, and maintain the pole and all equipment except cutouts and lightning arrestors which will be provided and installed by the Company. The Company will terminate the cable conductors to its distribution system. The Customer may install cutouts, lightning arrestors, and make terminations using Company approved equipment only if approved by Company personal to do the work. Also, if necessary and at their discretion, the Company will provide and install all Customer required equipment at the Customer’s expense.

All secondary riser systems shall be installed by the Customer in accordance with the specifications contained in Figure 12. When Schedule 80 PVC is used as conduit, as permitted in the case of secondary riser systems only, it shall meet the specifications as listed in UL-651 and NEMA TC-2.

No more than two (2) electric risers per pole shall be installed.

Whenever 90° bends are installed, adequate drainage shall be provided at the bottom of the bend as shown on Figure 21.

4.3.5.2 Grounding

When galvanized steel RMC is utilized, it shall be grounded by the Customer in one of the following three ways:

- Achieving electric continuity of metallic conduit to the meter socket or service equipment.
- Bonding to the grounding stud in the meter socket or service equipment using a conductor run together with the service lateral cable.
• Bonding to a driven ground and the neutral of the service lateral cable at the riser pole (see Figure 12).

4.3.5.3 Additional Installation Requirements

The Customer shall arrange to install cable long enough to extend from the top of the riser conduit to the Company’s lowest secondary conductor plus four (4) feet (see Figure 12). The Company will provide and install the additional protective covering, cable supports and conductor fittings (standard size only) without cost to the Customer, and will connect the service lateral to its distribution system. Pending this connection, the cable shall be capped, carefully coiled, and tied to the pole at the top of the conduit.

4.3.6 Conduit to Outdoor Meter

Where an underground service lateral terminates in a meter socket installed on the outside of a building, the cable shall be protected by, at a minimum, a 2" galvanized steel RMC or rigid non-metallic Schedule 80 PVC conduit up the wall and to the meter socket in accordance with Figures 12 and 13. All conduits and feeders shall be installed to prevent damage due to frost.

4.3.7 Conduit into Building

When an underground service lateral terminates within a building, the cable shall be protected by a galvanized rigid steel conduit or rigid non-metallic Schedule 80 PVC or ABS conduit through the wall and for five (5) feet outside the wall. This conduit shall terminate in service entrance disconnect provided by the Customer inside the building wall.

All conduits entering a building underground shall be sealed at their indoor ends with suitable compound. It shall be the responsibility of the Customer to install and maintain these seals to prevent the entrance of moisture and gases.

4.4 Underground Service above 600 Volts from Overhead Lines

4.4.1 Responsibility

Primary underground service laterals installed at the Customer's request or by Order of a Public Authority shall be installed, owned and maintained by the Customer. Financial responsibility shall be in accordance with filed Company tariffs. All installations shall be in accordance with these specifications.

4.4.2 Required Notice

The Customer shall consult with the Company in each case before work is started so the Company can designate the character of service and the pole from which the underground service lateral will originate.

4.5 Underground Service from Underground Lines

4.5.1 City Networks
4.5.1.1 Point of Termination

The service lateral in an underground city network area (where the Company’s lines are located in a street or public way) shall terminate in the Customer's service equipment inside the building wall.

4.5.1.2 Conduit and Duct

The Company will install, own, and maintain the conduit(s) or duct(s) from the underground network to the boundary line of the street or highway, or to a point just inside the Customer's basement wall if this wall is within ten (10) feet of the boundary line of the street or highway. The Customer shall provide the opening through the building wall to accommodate the conduit(s) or duct(s). All conduits or ducts entering a building shall be sealed by the Customer at the indoor ends with suitable compound. The Customer shall maintain these seals to prevent the entrance of moisture and gases.

4.5.1.3 Cable

If the building is within ten (10) feet of the boundary line of the roadway on which the underground line is located, the Company will furnish, install and maintain the service cable from its distribution line to the Customer's receiving bus or to the Customer's first disconnect device just inside the building wall. The Customer shall pay the Company for the installed cost of that portion of the cable, which is on private property. If the building is more than ten (10) feet from the street, the Company will install a splice box at the property line and make connections to the Customer's service lateral in the splice box. The cable and conduit system from the splice box shall terminate in the service entrance equipment and shall be installed, owned, and maintained by the Customer. Alternatively, the Company may, at its discretion, connect to the Customer’s conduit and install continuous conductors to the service equipment. The Customer shall reimburse the Company for the cost to provide the portion of service beyond the property line.

4.5.2 URD Subdivisions

4.5.2.1 General

New York State Public Service Codes, Rules and Regulations require underground residential distribution (URD) in all new subdivisions, or in a new section of an existing subdivision, consisting of five (5) or more single-family homes or one or more multiple occupancy dwellings (including four (4) or more dwelling units). All mobile home developments, or extensions of an existing development, with five (5) or more permanent sites shall also be provided with a URD system. Information on URD and related costs can be obtained by contacting the Company.

4.5.2.2 Application Requirements

Prior to construction by the Company, the applicant for construction of underground electric lines in a residential subdivision shall:

• Submit an application to the Company with sufficient lead-time for design of the facilities within the development.
• Provide the Company with a site map approved by the local authority. The map shall show the location of all lot lines, roads, sidewalks, curbs, water lines, sewer lines, storm drains grades, and landscaping features (trees, shrubs, light fixtures, etc.).

• Electrical conductors and cable shall not be installed under areas not readily accessible (such as under sidewalks and along paved roadways) unless in conduit.

• Install all other proposed underground facilities including water mains, sewer lines, and drainage facilities.

• Establish final roadway and parking area grades within six (6) inches of final grade; place and maintain construction survey stakes indicating grades, property lines and the location of other utilities. Curbs shall be installed before the underground facilities are installed.

• Make such contribution and/or deposit as may be required in accordance with Company tariffs.

4.5.2.3 Responsibility and Installation Requirements

In subdivisions of five (5) lots or more, the Company shall own, operate and maintain all portions of the URD system, including the service lateral, based on the builder/developer agreement with the Company, see Figure 14. The Customer shall provide and install equipment from the service lateral termination point to the residential structure.

In underground installations with less than five (5) lots, the Company shall own, operate and maintain all portions of the URD system servicing two (2) or more lots (see Figure 14). The Customer shall install, own, and maintain the service lateral to each lot and any primary cables that serve only one (1) lot as illustrated in Figures 14 & 15.

In mobile home developments where the land is not subdivided into separate lots, the Customer shall own, operate, and maintain all portions of the URD system. See Figure 40.

4.5.2.4 Additional Requirements

The use of double secondary service runs is strongly discouraged. Where double sets are used, they must be installed in conduit from service pole to building wall.

Services shall not be energized unless the following requirements are met:

• The installation is made in accordance with the requirements as contained herein.

• The installation meets all applicable codes and standards, including the NEC.

• The service lateral conductors shall be backfilled with proper sand padding for the entire length of the trench. The trench must be open for inspection by the authority having jurisdiction before backfilling. If the service fails to
meet approval, the service must be corrected and inspected by the authority having jurisdiction.

- After approval by the authority having jurisdiction, the service lateral conductors shall be backfilled prior to the Company energizing service.

- Backfill shall be free of large rocks, paving or other construction materials, large or sharply angular substances, or corrosive materials.

4.5.3 Non-Residential Complexes

4.5.3.1 General

The Company will install, own, and maintain the primary distribution system whenever underground service is requested by the Customer, or required by an Order of a Public Authority within a large commercial complex such as a shopping center or industrial park. Information on the requirements and related costs to the Customer can be obtained by contacting the Company.

4.5.3.2 Application Requirements

Prior to construction by the Company, the applicant for construction of underground electric lines in a commercial development shall:

- Provide the Company with sufficient lead-time to design the underground distribution system within the development, designating the metering locations and the locations from which services will be taken.

- Provide the Company with a site map approved by the local authority. The map shall show the location of all lot lines, roads, sidewalks, curbs, water lines, sewer lines, storm drains, grades, and landscaping features (trees, shrubs, light fixtures, etc.).

- Electrical conductors and cable shall not be installed under areas not readily accessible (such as under sidewalks and along paved roadways) unless in conduit.

- Rough grade the area over and adjacent to the proposed electric facilities to within six (6) inches of final grade.

- Establish and maintain construction survey stakes to readily determine grades, property lines and the location of other underground facilities.

4.6 Customer-Owned Overhead Service Connections

4.6.1 General

These specifications comprise the design and construction of Customer-owned electric overhead service connections. Adherence to these specifications will provide for standardized installations, which result in safe, reliable, and economic service.
These specifications are intended for primary extensions from the Company’s 2.5kV to 15kV overhead lines and also secondary extensions.

The Customer shall consult with the Company regarding the character and point of service before plans are completed, equipment purchased or any construction started. Failure to do so may result in delays and may require changes in the Customer’s electric system design and installation.

Customer-owned electric pole lines may also be used to support communication equipment (i.e., telephone and CATV). The Customer should consult the respective communication company for its requirements.

All customer-owned installations shall be designed, constructed, and maintained in conformance with the NEC, the NESC, the Company’s standards, and all other applicable local, state, and federal codes and regulations. If conflicts exist between requirements, the more stringent code shall take preference. The specifications set forth in this Section are general in scope. In the event that there are items not specifically covered herein or other questions arise, the Customer should contact the Company for further information.

4.6.2 Location

Pole lines should be straight and as free as possible from corners, which require guying. Adequate clearances should be maintained from buildings, trees, TV and cell towers, and other obstacles. Span lengths shall not exceed 200 feet. The proposed location of the first Customer pole shall be approved by the Company before construction is started. Any transformer pole shall be accessible by a 37,000 pound material handling line truck.

4.6.3 Tree Trimming

Adequate tree trimming shall be provided on all private electric lines. Satisfactory operation of primary lines requires a clearance of not less than ten (10) feet horizontally, and fifteen (15) feet vertically from all conductors. This usually means that a 20-foot right-of-way for single-phase and a 28-foot right-of-way for three-phase, clear of all trees and other interferences, shall be required.

4.6.4 Pole Specifications

Normally a 45-foot Class 2 pole is used for the service point. For Customer owned overhead lines, a Class 4 treated, yellow pine pole should be adequate in strength for most circumstances. Three-phase lines and poles supporting transformers may require a stronger Class of pole. Consult with the Company to insure proper support of Customer-owned facilities. Poles should be of sufficient height to accommodate the required electric and communication facilities and necessary clearances between the two facilities, while maintaining proper ground clearances (see Figures 6, 7 and 16). Three-phase construction will require, at a minimum, a 45-foot pole. Table 4.6.4 shows recommended setting depths for different lengths of poles.
<table>
<thead>
<tr>
<th>Pole Length</th>
<th>Setting Depth In Earth</th>
<th>Setting Depth In Rock</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>40’</td>
<td>6'-0”</td>
<td>5'-0”</td>
<td>Single-Phase Secondary Construction</td>
</tr>
<tr>
<td>45’</td>
<td>6'-6”</td>
<td>5'-6”</td>
<td>Single-Phase Primary & All Three-Phase Construction</td>
</tr>
<tr>
<td>50’</td>
<td>7'-0”</td>
<td>5'-6”</td>
<td>All Three-Phase Construction</td>
</tr>
</tbody>
</table>

4.6.5 Clearances

The vertical clearances of all conductors shall meet the requirements of the NEC, NESC, and the Company’s standards.

4.6.6 Anchors and Guys

Guying is required on all corner and dead-end poles. Where possible, anchors should be installed at a distance away from the pole equal to the height of the pole above ground. The anchor shall have adequate holding power (see Figure 17). Different types of soil require different anchors. For general electric line construction, a minimum of 3/4” by 8’ anchor rod and 5/16” galvanized guy strand are recommended. Consult the Company for information on the recommended type of anchor for unusual situations.

4.6.7 Type of Construction

All lines shall be built to 7.6/13.2 kV specifications using 10 kV pin insulators or 15kV dead end insulators. For construction in the towns of Hunter, Jewett, Lexington, Ancram and Gallatin, contact the Company for appropriate specifications (34.5 kV construction).

Most Customer-owned lines are single-phase. In areas where a neutral is available, the use of pole-top pin, phase and neutral construction is required. If a neutral is not available in the area, cross-arm construction is required. Cross-arms should be of fir or spruce, eight (8) feet in length and treated. Steel braces and 10 kV pin insulators on steel pins in the outside pin positions should be used (see Figure 18). Consult the Company for three-phase construction specifications.

4.6.8 Conductors and Accessories

In most instances, #2 ACSR (aluminum-steel reinforced) wire will be the most economical conductor. However, #4 hard drawn copper wire may be used.

All neutral conductors shall be bare (not covered).

Tie wires at insulators should be bare, solid wire of the same material as the conductor (#4 aluminum or #6 soft drawn copper).

Special attention should be given to electrical connections and connectors. At all electrical connections, regardless of conductor material, the conductors to be joined shall be wire brushed and an oxide-inhibiting compound immediately applied. Connectors used for aluminum-to-aluminum, aluminum-to-copper, or copper-to-copper shall be listed for such use.
4.6.9 Transformers

Where service is to be at secondary voltage, the Company will furnish and install the required transformer. A 45’ Class 4 pole (minimum), accessible by a 37,000 pound material handling line truck, is required at the transformer location. Three-phase installations will require a higher Class pole because of the weight of the transformer, and special construction may be necessary.

4.6.10 Lightning Arresters and Grounding

The protection and grounding installed for a transformer will usually be sufficient to adequately protect and ground the Customer's line.

For long lines, additional protection may be needed (see Figure 19). All metal components shall be connected to the ground system by standard means.

4.6.11 Secondary Voltage Construction

See Figure 18 for typical secondary construction.

4.6.12 Excavation and Blasting

Attention is called to the provisions of New York State Law, Rule 753, subpart 3.1, which requires that public utilities be notified two (2), but not more than ten (10) days, in advance of excavation work or blasting in an area in which gas mains are located, not including the day of the call. Blasting may require additional time for the utility to assess conditions.

4.7 Customer-Owned Underground Primary Service Connections

4.7.1 General

These specifications comprise the design and construction of Customer-owned electric underground service connections. Adherence to these specifications will provide for standardized installations, which result in safe, reliable, and economic service.

These specifications are intended for primary extensions from the Company’s 2.5kV to 34.5kV distribution lines and also secondary extensions.

The Customer shall consult with the Company regarding the character and point of service before plans are completed, equipment purchased or any construction started. Failure to do so may result in delays and may require changes in the Customer's electric system design and installation.

Natural gas piping, telephone and/or CATV lines may be installed in the same trench with the electric service lateral conductors (see Figure 11 for cables in conduit and Figures 20.0 through 20.3 for direct buried cables).

All Customer-owned installations shall be designed, constructed, and maintained in conformance with the NEC, the NESC, the Company’s standards, and all other applicable local, state, and federal codes and regulations. If conflicts exist between requirements, the more stringent code shall take preference.
The specifications set forth in this Section are general in scope. In the event that there are issues not specifically covered herein or other questions arise, the Customer should contact the Company for further information.

4.7.2 Location

The route of the underground primary line should be planned to be as straight as possible from the riser pole to the transformer location. The right-of-way should be cleared of stumps, brush and any other above and below grade obstructions. Grade should be within six (6) inches of final grade before trenching.

4.7.3 Excavation and Backfill

The Customer shall excavate and backfill all trenches in accordance with the NEC. See also Figure 11 in this book for cables in conduit and Figures 20.0 through 20.3 for direct buried cables.

4.7.4 Primary Cable Installations

Direct buried primary cable shall conform to the following specifications. The Company maintains 34.5KV distribution systems in the towns of Hunter, Jewett, Lexington, Ancram and Gallatin. See below for cable specifications in those areas. Deviation from these specifications without prior approval from the Company may result in complete removal and replacement of cable before final connection to grid is performed.

For primary cable installations of 4kV to 15 kV, the Customer shall use 15kV, #2 AWG aluminum conductors, 7-wire compressed or concentric round stranding, with 15 mils conductor shield, 220 mils cross linked polyethylene insulation, 30 mils insulation shield and 10 #14 AWG tinned copper concentric neutral applied spirally around the cable with a 50 mils semi-conducting cable jacket applied over the neutral conductor.

For primary cable installations of 34.5 kV the Customer shall use 35 kV, #1/0 AWG, 19-wire compressed aluminum conductors with an average conductor shield of 15 mils of semi-conducting thermosetting material. Insulation shall be cross-linked polyethylene (XLP) 345 mils thick, suitable for use in wet locations. Insulation shield shall be semi-conducting thermosetting material with an average thickness of 50 mils. Concentric neutral conductor shall be 16 #14 AWG copper evenly spaced over the insulation shield. The Customer shall use a cable with an outer jacket covering of the concentric neutral.

Outer jacket shall be semi-conducting black material with a radial resistivity of not more than 100 ohm-meter. Average jacket thickness shall be 50 mils and shall be clearly marked with three (3) extruded bright red stripes, spaced 120 degrees apart. The stripes shall be 1/4” wide and 10 mils deep into the jacket material. This will distinguish it from a polyethylene gas pipe and other cables, which may be in the same area.

All primary cables shall be field tested in accordance with the manufacturer's recommendation for testing the electrical integrity of the insulation. The field test shall be made after the installation is complete.

4.7.5 Riser Pole and Associated Terminations

The Company shall designate the riser pole, transformer or other point of termination from
which the Customer's electric service lateral will originate. No more than two (2) electrical riser conduits are permitted per pole. All risers shall be on the non-traffic side(s) of the pole and allow for conductor installation to Company space on pole without conflict from other utilities equipment/cables. Where the riser must be installed facing traffic due to existing obstacles, contact the Company prior to installation. When an underground service lateral is required by the authorities having jurisdiction and the Company’s pole is on the opposite side of the public highway from the Customer's premises, the Customer will install, own and maintain a highway crossing pole and appropriate guy on the Customer's side of the highway, preferably on the Customer's property. The Company will, at no expense to the Customer, install one (1) overhead primary extension to this pole. When an underground service lateral is requested by the Customer, all required highway crossing poles, and necessary appurtenances, shall be installed in accordance with Section 4.3.1.2.

At the riser pole, where a single-phase, underground service connection originates, the Customer shall install a 2", 90 degree galvanized steel RMC bend at the base of the pole and a galvanized 2" rigid steel conduit up the pole, not less than 8' nor more than 11' above the final grade. Schedule 80 PVC is, however, allowed for secondary riser systems. Whenever 90° bends are installed, adequate drainage shall be provided on the bottom of the bend as shown on Figure 21. For three-phase service or other special cables, the Customer should obtain conduit size information from the Company. The conduit shall extend outward five (5) feet from the lower end of the bend and shall be grounded by the customer in accordance with Figure 21.

The Customer shall arrange to install cable long enough to extend from the top of the riser conduit to the top of the riser pole. Should the Customer elect to install a continuous conduit system, schedule 40 PVC may be used for the below grade portion of the conduit system.

If a Customer owned pole is required, the Customer shall provide, install, and maintain the pole and all equipment except cutouts and lightning arrestors which will be provided and installed by the Company. The Company will terminate the cable conductors to its distribution system. The Customer may install cutouts, lightning arrestors, and make terminations using Company approved equipment only if approved by Company personal to do the work. Also, if necessary and at their discretion, the Company will provide and install all Customer required equipment at the Customer’s expense.

4.7.6 Transformers

For single-phase transformers up to 167 kVA, the Customer shall install a fiberglass box pad within ten (10) feet of driveway or roadway, unless a farther location is approved by the Company. For three-phase transformers, refer to pad specifications in Figure 22. The Customer shall provide and install all ground rods and grounding conductors for pad-mount transformers (see Figures 22 & 23). The Company will furnish and install a pad-mounted transformer, terminate and connect the Customer's primary and secondary cables in the pad-mounted transformer. Customer shall provide sufficient slack cable at the transformer for the Company to make these connections. Multi-transformer installations and transformers in vaults require special consideration. The Company shall be consulted prior to the design and installation of these facilities.

4.7.7 Trenching

Trenching and burial of direct burial primary cable shall be installed in accordance with Figures 11 & 20. Minimum cover for underground primary installations shall conform to NEC Table 300.50. An abbreviated version of this table is shown on Fig. 11 for reference only.
5. SERVICE EQUIPMENT

5.1 General

All service equipment shall be furnished, installed and maintained by the Customer.

All service equipment shall meet the requirements of the NEC and all other applicable codes.

The equipment shall have a minimum rating of 100 amperes, single-phase, three-wire, 120/240 volts, unless granted an exception by the Company.

In multi-meter installations, each service equipment shall be permanently marked to indicate the load served.

The Company requires treating aluminum conductors with an antioxidant compound prior to terminating or joining conductors to electrical equipment. The compound used shall be listed for such purposes.

5.2 Additional Requirements

All service equipment shall also meet the following requirements:

- A voltage rating suitable to the service.
- An ampere rating which is adequate for the initial and anticipated future load current requirements. The device shall be capable of interrupting load current equal to its ampere rating.
- A fault current interruption capability sufficient to meet initial and anticipated needs.
- Any connection made ahead of the main service equipment (i.e., fire pumps, exit signs, alarm circuits, control power for circuit breaker) shall be provided with disconnecting means and overcurrent protection adequate for the duty. Such connections shall be made only where specifically approved by the Company and shall be metered either separately or through the main metering equipment.

5.3 Location of Service Equipment and Working Space

The service equipment shall be located in a clean, dry, weatherproof (IE doors, windows, and roof must be installed), readily accessible location as near as is practicable to the entrance of the service conductors. When located in a location that doesn’t meet the above requirements, provide service equipment with appropriate NEMA rated enclosure.

Sufficient access and working space shall be provided and maintained about all electrical equipment to permit ready and safe operation and maintenance of such equipment.

Working space for equipment likely to require examination, adjustment, servicing, or maintenance while energized, shall comply with Article 110 of the NEC.
5.4 Location of Main Disconnect

All service equipment shall be located on the load side of the meter with the following exceptions:

- Service from city network areas.
- Service at 277/480 volts with self-contained metering.
- Those multi-meter installations that require a main disconnect by NEC 230.71.

For the above exceptions, a main disconnect switch shall be provided by the Customer on the line side of the meter. The disconnect switch shall have a short-circuit current rating that is not less than the available short-circuit current at the line terminals of the switch.

5.5 Service below 600 Volts

5.5.1 Equipment Rated below 400 Amperes

The Customer shall terminate the service entrance conductors in a metering device or in service equipment furnished by the Customer. Equipment must be service entrance rated. If fuses are used, they shall meet the following requirements:

- The fuse shall conform to the latest NEMA standard for power fuses.
- The Customer shall have responsibility for spare fuses.

If a thermal magnetic circuit breaker is used, it shall meet the following requirements:

- An operating mechanism that trips all phases simultaneously.
- An overcurrent-tripping device on each pole, providing time delay overcurrent protection and instantaneous tripping for currents of available fault magnitude.
- Conformance with latest NEMA and ANSI standards for power circuit breakers. UL listed.

5.5.2 Equipment Rated at or above 400 Amperes

The Customer shall furnish and install all service equipment, including instrument transformer cabinets and metering cable conduit. Equipment must be service entrance rated.

The Customer shall review with the Company the service equipment specifications prior to the purchase of such equipment.

If the Customer chooses to incorporate the metering instrument transformer cabinet within the switchgear, specifications for such cabinet shall be submitted to the Company for approval prior to purchase.

Service equipment rated above 400 amperes shall also meet the latest ANSI and NEMA standards and be UL listed.
5.5.3 Network Areas or Service at 277/480 Volts or 480 Volt Delta with Self-Contained Metering

The Customer shall provide a single, service entrance rated, main disconnect on the line side of the Company’s metering equipment.

In network areas and certain special underground applications, the Company’s service entrance conductors may be connected directly to the terminals of the main service switch or circuit breaker. Where the Company’s service conductors are of such a size or number that they cannot be connected to the terminals, a suitable service bus capable of withstanding the mechanical stresses developed by the fault current shall be provided by the Customer.

5.6 Service above 600 Volts

5.6.1 Location

The location of the service equipment and the electrical system configuration shall be determined upon mutual consideration of all factors by the Customer and the Company. Based on the configuration selected, the Company will advise the Customer concerning specific requirements for basic insulation level (BIL), protective equipment, and metering.

5.6.2 Application Requirements

The Customer shall submit detailed plans for approval by the Company prior to the purchase of equipment or proceeding with the installation. Where service will be supplied from a 13.2kV grounded wye feeder and the Customer requires a three-phase wye secondary service, the Customer shall supply 95kV (BIL), wye-wye connected transformers with a "five-legged" core.
6. **GROUNDING**

6.1 **General**

The grounding conductor and the service entrance equipment shall be effectively and permanently grounded in accordance with Article 250 of the NEC.

The frames and secondary neutral of all instrument transformers and Customer-owned transformers shall be grounded. See section 7.5 of this specification for information on grounding metering equipment.

6.2 **Grounding Electrode Conductor**

The size of the grounding electrode conductor shall be in compliance with Article 250 of the NEC. In addition, the Company requires a copper (stranded) grounding conductor for all service grounds.

6.3 **Grounding Electrodes**

All grounding electrodes shall be a minimum 5/8” x 8’ copperweld or galvanized rod. Rod electrodes shall be free from nonconductive coatings such as paint and enamel.

A single grounding electrode, which does not have a resistance to ground of 25 ohms or less, shall be augmented by one additional electrode. A supplementary grounding electrode shall be spaced no less than six (6) feet from any other grounding electrode. When two or more grounding electrodes are used, they are to be effectively bonded together in accordance with Article 250 of the NEC.

Where available, continuous metallic underground water piping in direct contact with earth for a minimum of ten (10) feet may be used as the ground. However, the water piping shall be supplemented by an additional grounding electrode in accordance with Article 250 of the NEC.

Under no circumstances shall aluminum, gas, or fuel oil piping system be used as a grounding electrode, nor should any CATV, phone, electric or other bonding conductors be placed in contact with gas mains or service piping, gas meters and regulators, or any other gas equipment.

6.4 **Communications Equipment**

All communications equipment (CATV, satellite, telephone, etc.) shall be grounded in accordance with Articles 250, 800, 810, 820, 830, and 840 of the NEC.

6.5 **Grounding of Standby AC Generating Sources**

6.5.1 **Separately Derived Systems**

Where a standby AC generator is used as a separately derived system, it shall be grounded to a grounding electrode in accordance with Article 250.30 of the NEC.

6.5.2 **Non-Separately Derived Systems**

Where a standby generator is used as a non-separately derived system, the equipment grounding conductor shall be bonded to the system grounding electrode.
6.6 Grounding of Interconnected Electric Power Production Sources

6.6.1 General

Electrical energy systems that may be interactive with other electrical power production sources, with or without electrical energy storage such as batteries, shall be grounded in accordance with the NEC.

6.6.2 Generators

Interconnected generators, including wind-driven generators, shall be grounded in accordance with Articles 250 and 705 of the NEC.

6.6.3 Solar Photovoltaic Systems

Solar photovoltaic systems shall be grounded in accordance with Articles 250, 690 and 705 of the NEC.

6.6.4 Fuel Cell Systems

Fuel cell systems shall be grounded in accordance with Articles 250, 692 and 705 of the NEC.
7. **METERING**

7.1 **General**

7.1.1 **Responsibility**

The Customer provides and installs all equipment beyond the point of delivery: meter sockets, cabinets and enclosures, connection lugs, conduit, means for grounding, protection devices, and associated wiring from the socket to the load.

The Company will furnish, install and connect all meters, meter instrument transformers, test switches, and meter cable. All meters, meter facilities and all points of access to unmetered wiring on the Customer's premises will be sealed by the Company. All cabinets and equipment enclosures containing unmetered conductors shall be made sealable before the service is energized.

7.1.2 **Meter Service Provider**

Customers with demands of 50 kW or greater for two (2) consecutive months during the most recent twelve (12) consecutive months may obtain competitively-provided billing meters and associated metering data services from an approved meter service provider. Additional information on this matter may be found in Company tariffs or by contacting the Company.

7.1.3 **Meter Type**

For single socket meter installations, the Customer shall furnish and install a meter socket or metering enclosure if the service connection is less than 600 volts and the conductor size does not exceed 400A rating (see Figures 24, 25, 26, and 27). If the service exceeds the above limitations the Customer shall furnish, install and maintain a metering transformer mounting enclosure with mountings approved by the Company and necessary metering conduit and meter socket (see Figures 28, 29, and 30).

7.1.4 **Restrictions**

The Company's metering equipment shall not be used to operate any Customer devices, except in those cases where prior approval has been granted.

Normally, direct metering is required for all new services. Master metering and submetering are allowed in certain instances with specific approval from the New York State Public Service Commission.

7.2 **Meter Location**

7.2.1 **Responsibility**

The Company will designate the meter location.

7.2.2 **Working Space Requirement**

A clear working space of four feet square shall be provided and maintained in front of the meter by the Customer. This space shall be permanently free of all obstructions, including landscaping.
7.2.3 Outdoor Meters

Meters and current transformer enclosures (as required) normally will be located outdoors. All outdoor meter sockets shall be installed vertically such that the center of the face of the meter is between four (4) feet and five (5) feet above final grade (except meter pedestals). Current transformer enclosures shall be NEMA type 3R construction.

7.2.4 Indoor Meters

Where a meter is installed indoors, it should be located as close as practical to the point where the service enters the building. Meters shall not be installed where subject to vibration or mechanical damage, or in stairways, coal bins, bathrooms, toilets, bedrooms, attics, store windows, behind shelves, in transformer vaults, near moving machinery, or similar inconvenient or dangerous locations.

7.2.5 Electric and Gas Meter Separation

Separation between a gas meter/regulator and an electric meter and/or meters shall be three (3) feet minimum (see Figure 31).

7.2.6 Restriction

Metering shall not be installed on a Company pole or equipment unless such metering is for the purpose of measuring electrical consumption of communication equipment located on the same pole.

7.3 Meter Installations

All metering equipment including service pedestals shall be adequately supported, securely fastened, and in a level and plumb position.

On Customer meter poles, the meter shall be installed so as to have reasonable protection from damage.

All unused openings in the enclosure shall be closed with suitable plugs.

7.4 Multiple Meter Installations

7.4.1 General

Where two or more meters are to be installed, they shall be grouped at one location.

7.4.2 Company Approval

The Customer shall provide and install a multi-socket panel base assembly of two or more positions of a type that is approved by the Company.

7.4.3 Installation Requirements

Grouped metering equipment shall be in installed in accordance with Figures 32 and 33.
7.4.4 Identification Requirement

Each meter shall have a permanently engraved metal or hard plastic label, which clearly identifies the load served.

7.5 Grounding and Bonding Metering Equipment

7.5.1 General

All services shall be effectively and permanently grounded in accordance with Article 250 of the NEC (see Figure 34). Load center, temporary metering poles with no disconnect, CT, and three-phase metering shall be effectively grounded.

7.5.2 Remote Metering Equipment

All equipment containing service conductors shall be grounded and bonded. This includes meter enclosures, metal raceways and metal weatherheads that are installed remote from service equipment or where service disconnects are not used (see Figure 34).

The grounded service (neutral) conductor shall be connected to the neutral terminal of the remote meter enclosure. A copper grounding electrode conductor, sized per NEC Article 250, shall be used to connect the neutral terminal to a grounding electrode.

A single grounding electrode, which does not have a resistance to ground of 25 ohms or less, shall be augmented by one additional electrode. A supplementary grounding electrode shall be spaced no less than six (6) feet from any other grounding electrode. When two (2) or more grounding electrodes are used, they are to be effectively bonded together in accordance with Article 250 of the NEC.

7.6 Meter Boards and Panels

The meter board shall be made of 3/4 inch exterior grade plywood and painted with a good quality flat paint. The meter board shall be large enough to accommodate all metering equipment (connection boxes, switches, meters, etc.) necessary for each particular type of installation.

The Customer may incorporate the meter panel within a service equipment switchgear assembly. The Company shall be consulted concerning approval for the panel, space requirements and the arrangement for meter instrument transformer mounting.

7.7 Meter Socket Requirements

7.7.1 General

Ringless meter sockets may be used for all installations with standard line and load-side lugs sized to accept appropriate sized conductor. Ring-type will not be allowed on new installations.

Spade lugs and crimp-on connectors are not permitted.

All lugs shall be capable of accepting aluminum and copper wires.

All meter positions shall have individual, removable and sealable covers.
Meter requirements are also summarized in Table 7.7.6.

7.7.2 UL Listing

All meter sockets shall be UL listed and possess the UL label clearly on the enclosure.

7.7.3 Meter By-pass

A meter lever by-pass shall be installed by the Customer for all non-residential applications, except licensed attachments (less than 200A with UPS backup) to Company poles by communication companies. A meter lever by-pass is also required for all applications with life-supporting medical equipment, traffic signal meters, and the landlord meter in multi-tenant residential buildings with four or more units.

7.7.4 120/208V Network Service

Fifth terminals shall be installed by the Customer for 120/208V supply voltage. The fifth jaw shall be manufacturer-approved for the meter socket in which it is installed, and shall be installed per manufacturer’s specifications at the 9 o’clock position.

7.7.5 320A Self-Contained Metering

7.7.5.1 General

The meter socket required for a 400A service is a "Class 320" meter socket. It is larger than the 200 A meter socket, but it is still a self-contained meter socket (it doesn’t require instrument transformers). It can be installed where the continuous current rating is 320 amps or less. If your service will require more than 320 amps continuous, you are required to install a current transformer (CT) service.

7.7.5.2 Additional Requirements

Applications requiring 320A self-contained metering shall be installed in accordance with Figure 35.

320 A self-contained meter sockets shall not be used for 100 A and 200 A services.

Conductors feeding services with 320 A self-contained meters shall be rated for the size of the service as determined by Article 220 of the NEC. Service entrance conductors shall be sized for the overcurrent protection provided and certified by the electrical inspector.

The use of double secondary service runs is strongly discouraged. Where double sets are used, they must be installed in conduit from service pole to building wall.

7.7.6 Poly-phase Metering

Specifications on poly-phase group metering above 277/480V shall be submitted to the Company for approval prior to purchase.
All poly-phase meters shall have lever type by-pass mechanisms and ringless style covers.

<table>
<thead>
<tr>
<th>Application</th>
<th>Service Size</th>
<th>Voltage</th>
<th>Phases</th>
<th>UL List</th>
<th>Manual Lever Bypass</th>
<th>Additional Requirements</th>
<th>MilBank¹ Meter Pan Catalog Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>100A 200A</td>
<td>120/240V</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>U7487-RL-TG-KK U7040-RL-TG-KK-RGE</td>
</tr>
<tr>
<td>Residential</td>
<td>320A Self-contained</td>
<td>120/240V</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Anti-inversion feature, 200A rejection</td>
<td>U2448-X-RGE-K4802</td>
</tr>
<tr>
<td>Residential</td>
<td>Over 400A</td>
<td>Secondary</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>CT metering</td>
<td>U4490XL</td>
</tr>
<tr>
<td>Residential</td>
<td>100A 200A</td>
<td>120/208V</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>Fifth Jaw</td>
<td>U7487-RL-TG-KK-5T8K2 U7040-RL-TG-KK-RGE-K5T</td>
</tr>
<tr>
<td>Commercial</td>
<td>100A 200A</td>
<td>120/240V</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>U9801-R</td>
</tr>
<tr>
<td>Commercial</td>
<td>100A 200A</td>
<td>120/208V</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Fifth Jaw</td>
<td>U9551-RXL</td>
</tr>
<tr>
<td>Commercial</td>
<td>320A Self-contained</td>
<td>120/240V 120/208V</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Anti-inversion feature, 200A rejection</td>
<td>U2448-X-RGE-K4802 U2448-X-RGE-5T9-K4802</td>
</tr>
<tr>
<td>Commercial</td>
<td>100A 200A</td>
<td>120/240V 120/208V</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Anti-inversion feature, 200A rejection</td>
<td>U2594-X-K4802</td>
</tr>
<tr>
<td>Commercial</td>
<td>320A Self-contained</td>
<td>120/240V</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Anti-inversion feature, 200A rejection</td>
<td>U2594-X-K4802</td>
</tr>
<tr>
<td>Commercial</td>
<td>Over 400A</td>
<td>Secondary 1</td>
<td>Yes</td>
<td>Yes</td>
<td>CT metering</td>
<td></td>
<td>U4490XL</td>
</tr>
<tr>
<td>Commercial</td>
<td>Any</td>
<td>Primary 1</td>
<td>Yes</td>
<td>Yes</td>
<td>CT metering Test Switch</td>
<td></td>
<td>U4490XL w/ Test Switch Provision</td>
</tr>
<tr>
<td>Commercial</td>
<td>Over 400A</td>
<td>120/240V 120/208V</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>CT metering</td>
<td>U4493-XL</td>
</tr>
<tr>
<td>Commercial</td>
<td>Over 400A</td>
<td>277/480V Primary 3</td>
<td>Yes</td>
<td>Yes</td>
<td>CT metering Test Switch</td>
<td></td>
<td>U4497-XL w/ Test Switch Provision</td>
</tr>
</tbody>
</table>

Notes:

1. Milbank model numbers are shown for reference only. Other approved manufacturers are acceptable.

7.8 Meter Relocation

Whenever it is necessary to relocate an existing service entrance, service equipment, meter or meter board, the new installation shall be made by the Customer at his or her expense in accordance with these specifications.

7.9 Shared Meter Law
New York State has enacted a revised shared meter law. This law may be found in Section 52 of the Public Service Law of New York State.

The overall purpose of the law is to eliminate, to the extent practicable, the use of shared utility meters.

A shared meter is a utility meter that measures gas or electric service to a tenant’s dwelling and also measures such service to areas outside the tenant’s dwelling with the result that the tenant is paying for service provided to the tenant’s dwelling and for service provided to areas outside that dwelling that are not under the exclusive use and control of the tenant.

Under the law, each owner is responsible for eliminating any shared meter condition that exists on the owner’s property. Alternatively, an owner may establish an account with the Company in the owner’s name for the shared meter.

An owner is not required to eliminate a shared meter if there is a legal impediment to eliminating the condition, or if the cost of eliminating the condition would be extraordinary, or if the amount of service measured through the shared meter is minimal. Additional information on these conditions and on the Shared Meter Law in general can be obtained by contacting the Company.

7.10 Load Control Pulses

At the Customer's request, the Company will furnish demand pulse signals at the metering location, representing the kW demand for operating Customer-owned load control equipment. Time pulses will not be supplied. The Customer shall provide payment, in advance, covering the initial cost and installation expense for this equipment.

7.11 Unauthorized Use

The breaking of seals, tampering with meters or unmetered wiring is strictly prohibited (New York State Penal Law, Section 165.15). Violators will be prosecuted.
8. COMPANY TRANSFORMER INSTALLATIONS ON CUSTOMER PREMISES

8.1 General

The type of transformer installation (pole-mounted, pad-mounted, transformer vaults, etc.) will depend upon specific conditions. The Customer shall, in all cases, consult the Company regarding the location, selection and details of the transformer prior to finalizing plans.

8.2 Responsibility

Primary and secondary terminations for conductors not standard with Company specifications shall be supplied by the Customer.

The Customer shall install any required transformer pads, poles or vaults in accordance with Company specifications.

The Company will make the primary and secondary terminations and the final transition connections.

8.3 Suitable Location Requirement

When the Customer requests to have the Company install its transformers and/or other equipment on the Customer's property, the Customer shall provide a suitable location with satisfactory access for the installation, operation, and maintenance of Company equipment within ten (10) feet of roadway, driveway or parking lot, unless otherwise approved by the Company. If a location isn’t within (10) feet of a roadway, driveway or parking lot and wasn’t accepted by the Company prior to installation, the Company reserves the right to deny service.

8.4 Transformer Vaults

8.4.1 General

The Customer shall provide, own and maintain a suitable vault for transformers with proper ventilation, together with the underground conduit and cable as required for the primary supply cable from the line pole to the vault.

It is recommended that a spare underground conduit be included with the initial installation.

8.4.2 Responsibility

The Customer shall furnish detailed plans for approval by the Company prior to construction of the vault. The vault shall comply with all provisions for transformer vaults in accordance with the NEC and all applicable local ordinances and building codes.

The Customer shall install, own and maintain the complete low voltage service from the transformer low voltage terminals to the service equipment.

Upon consultation with the Customer, the Company will furnish recommendations for each transformer vault.
8.4.3 Restrictions

Neither service equipment nor meters shall be located in the transformer vault.

8.4.4 Access

Access to the vault shall be restricted to authorized personnel only. All vaults containing Company equipment shall have provisions for double locks to allow Company personnel access to the vault.
Section 9 Manufactured Homes, Mobile Homes and Recreational Vehicles

9. MANUFACTURED HOMES, MOBILE HOMES AND RECREATIONAL VEHICLES

9.1 General

The requirements for electric service and meters for mobile homes, mobile home parks and recreational vehicles differ from the requirements for other types of service and, therefore, must be given special consideration.

9.1.1 Advanced Notice Requirement

The Company shall be consulted in advance regarding each specific installation.

9.1.2 Character of Service

Each mobile home shall be supplied with an individual service connection. The NEC and clearance requirements generally preclude the attachment of a service connection directly to a mobile home. It is therefore necessary for the Customer to provide a point of attachment that is separate and removed from the mobile home.

The Customer’s service equipment shall be suitable for connection to a supply system nominally rated at 120/240V, 3-wire AC, single-phase with a grounded neutral.

9.1.3 Installation Requirements

All mobile home installations shall be in accordance with Article 550 of the NEC and with the specifications contained herein.

The grounding of the electric service shall be in accordance with the NEC.

The Customer shall be required to provide adequate support for attachment of the service lateral.

For service laterals, a combination service meter pedestal shall be used (see Figure 36). The Company shall be consulted as to acceptable types of this equipment.

9.1.4 Manufactured Homes

A manufactured home with prior written approval from the local authority having jurisdiction may be permitted to have service connected as described outside this section.

9.2 Individual Mobile Homes

9.2.1 General

Mobile homes not located in a development or park can be supplied with an overhead or underground service connection.
Section 9 Manufactured Homes, Mobile Homes and Recreational Vehicles

9.2.2 Overhead Service Connection

An overhead service connection shall terminate on a suitable Customer pole in accordance with the applicable service requirements of Section 4 (see also Figures 37 and 38).

The service entrance conductors and equipment shall have a minimum current rating of 100 amperes for a single-phase meter.

9.2.3 Underground Service Connection

An underground service connection shall be in accordance with the applicable requirements of Section 4 (see also Figures 37 and 38).

The service shall have a minimum rating of 200 amperes for a single-phase meter.

9.3 Mobile Homes in Parks Served from Overhead Lines

9.3.1 Responsibility

The Company will install, own and maintain the overhead primary and secondary distribution lines required to deliver permanent electric service to parks that contain at least two (2) but less than five (5) adjacent mobile home sites.

The service connection shall be installed, owned and maintained by the Customer.

All meter board applications shall be installed in accordance with Figure 39.

9.3.2 Character of Service

Each new mobile home in parks which are served from overhead lines, shall be supplied with an underground service lateral and a minimum capacity of 200 amperes for a single-phase meter connection.

9.4 Mobile Homes in Parks Served from Underground Lines

All meter board applications shall be installed in accordance with Figure 40.

Each mobile home in parks that contain five (5) or more dwelling units designed for permanent residential occupancy shall be connected in accordance with the provisions of Section 4.5.2.

9.5 Recreational Vehicles

The service to a recreational vehicle park or campground will be provided through one service to one location in the name of the operator of the park. Individual vehicle sites in a park or in campsites will not be metered by the Company.

All installations must be in accordance with Article 551 of the NEC.
10. DISTURBANCES

10.1 General

The operation of large flashing signs (over 10kVA), welders, arc furnaces, dielectric and induction heaters, X-ray equipment, radio and television transmitters, variable voltage and frequency devices, reciprocating compressors, rock crushers, and similar apparatus having intermittent flow of large currents interferes at times with other users of the electric system.

The Customer shall consult the Company in each case so that the type of electric service that will be supplied, the corrective equipment needed, and other special precautions that must be taken will be mutually known factors before planning to use such apparatus.

Customers with equipment that causes interference on the electric system affecting other users shall, upon notice from the Company, take immediate remedial measures to eliminate such interference. The Company reserves the right to discontinue service where equipment used by the Customer results in objectionable effects currently or in the future.

10.2 Motors

All motors connected to the Company’s system shall be of a type with operating characteristics deemed acceptable by the Company (see Section 11 for specific requirements).

10.3 Harmonics

Certain devices installed by the customer such as large rectifiers, variable voltage and frequency devices, electronic ballasts, etc. may cause harmonic waveform distortion. Harmonic voltage distortion generated by the Customer shall not cause any applicable ANSI standard to be exceeded for Company equipment connected to the system and shall not adversely affect Company equipment or its service to others.

The current distortion levels associated with the Customer’s loads or generation shall be in compliance with the limits specified in IEEE Standard 519.

In the event these standards are not complied with, the Customer shall take immediate, corrective action.
11. MOTORS AND CONTROLLERS

11.1 General

The Company shall be consulted concerning the type of service available to insure correct application (phase and voltage) of the motor to be used.

For any single-phase motor rated 10 HP (equivalent 10 Tons or 120,000 BTUH air conditioner or heat pump) or larger or any three-phase motor rated 25 HP (equivalent 60 Tons or 720,000 BTUH air conditioner or heat pump) or larger, the Customer shall review with the Company the operating characteristics of the proposed installation, such as how frequently the motor will be started and if the load fluctuates rapidly as, for example, in a sawmill, stone crusher, elevator, etc.

Alternating current motors that are connected directly to the Company’s system shall be designed for operation at a frequency of 60 Hertz.

11.2 Single-Phase Motors

Single-phase motors larger than 1/2 HP, or with running current exceeding 10 amperes, should normally be arranged for operation at 208 or 240 volts. Generally, motors larger than 5 HP should be three-phase, but the Company may require that single-phase motors be used where three-phase service is not readily available.

11.3 Protection

All equipment (i.e., motors, computers, and microprocessor controlled equipment) should be properly protected against overload. It is the Customer's responsibility to protect three-phase motors against the possibility of single-phase or partial power operation. Reverse-phase relays, together with circuit breakers or equivalent devices, should be used on all three-phase installations for elevators, cranes and similar applications to protect the installation from phase reversal.

The Company will not be responsible in any way for damage to Customer’s equipment due to failure of the Customer to provide adequate protection.

11.4 Zero Voltage Release

It is recommended that motor controllers be so arranged that, in the event of a sustained interruption, the motor will be disconnected from the line, unless it is equipped for automatic re-starting.

11.5 Motor Starting Requirements

Momentary fluctuation of the circuit voltage occurs each time a motor is started on the circuit. Where this effect is pronounced, a visual disturbance or light flicker may be observed by the Customer or by other Customers served from the same system. In extreme cases, the motor itself may have difficulty in starting.

To avoid objectionable voltage variations and maintain proper service to the Customer and neighbors, it is necessary to set a maximum permissible limit to the current drawn from the service during each step of a motor-starting operation, based upon frequency of starts. Motor starters are recommended for larger motors to reduce the voltage dip caused by starting a motor. Analysis for Customers with large motor loads described in 11.1 will take place during the application process. If motors are potentially started in a group instead of
individually, the Customer shall provide this information so the Company’s analysis shall apply to the group and not to the individual motor. When the Company receives complaints of voltage flicker, the Company will investigate and if caused by the Customer’s equipment will require remediation; otherwise, further starting operation of the Customer’s equipment will not be permitted.
12. SPECIAL EQUIPMENT

12.1 Computers, Solid-State Devices or Other Voltage-Sensitive Equipment

The Company will endeavor to deliver voltage within an approximate 5% tolerance (see also Section 1.10), but shall not be responsible for damage to equipment or loss of data due to outages or voltage transients that exceed these limits.

It is the responsibility of the Customer to provide and maintain protective interface equipment.

12.2 Automatic Reclosing

The Company generally installs on its system equipment for automatic reclosing after an interruption. The Customer shall provide at his or her expense:

- Adequate safeguards for all equipment that might be adversely affected by automatic reclosing.
- Such equipment as may be required to prevent his or her equipment from interfering with the proper functioning of the Company’s automatic reclosing equipment.

Certain motor applications may require disconnection from the power system upon initial loss of power to prevent hammering and back generation. Manual restart may be necessary for such equipment.

12.3 Electric Fences

The Company urges extreme care in selecting an electric fence system and close adherence to the manufacturer’s instructions for installation and operation. A controller, commonly called a fence charger, is required to regulate the amount and timing of the current through the wire.

The fence charger and associated equipment used shall be UL listed.

For guidance in methods, materials and equipment to construct electric fences, those interested are referred to the U.S. Department of Agriculture, Farmers Bulletin No. 1832 or to qualified experts such as the Department of Agricultural Engineering, Cornell University, Ithaca, New York.

12.4 Swimming Pools

All swimming pool installations must be in accordance with Article 680 of the NEC.

The NEC and the NESC provide guidelines for clearance of conductors passing over private swimming pools or surrounding land (see Figure 7). New York State Sanitary Code Part 6, Subpart 6-1.17(i) requires all overhead conductors are at least twenty (20) feet from public swimming pools. The Company also recommends this distance for private swimming pools. If there are any questions regarding the clearance at a specific site, the Company shall be contacted to determine available clearance before work is started.

Under no circumstances, shall anyone, other than qualified Company personnel, attempt to measure clearances to the Company’s electric system.
Customers shall be requested to relocate any swimming pool to correct code violations by the improper placement with respect to the Company’s overhead lines.

When electric lines require relocation, the Customer shall contact the Company in advance to schedule work activities. The cost of this work shall be borne by the Customer.

12.5 Lightning Protection

Secondary surge arresters are recommended for protection of Customer equipment where such additional protection is desired. Arresters shall be connected on the load side of the main disconnect, not at the weatherhead.

Lightning rod systems, if desired, shall be installed in accordance with NFPA 780 "Lightning Protection Code". Grounding of a lightning protection system shall be in accordance with Article 250 of the NEC. A bond between the lightning rod system down ground and the service neutral shall not be installed nor shall the meter enclosure be bonded to the down ground.

12.6 Customer-Installed Capacitors

The Company shall be consulted prior to procuring and installing power factor correction equipment for Company evaluation and acceptance.

A Customer installing capacitors to improve the power factor shall obtain from the Company supply system characteristics so that the capacitors can be properly applied.

12.7 Carrier Current Systems

If a Customer uses building wiring as a carrier current system for communication, signaling or other purposes, the Customer shall install suitable filter equipment or make other provisions approved by the Company to keep the Company’s distribution facilities free from carrier currents.

The Company shall be consulted prior to procuring and installing carrier system equipment for Company evaluation and acceptance.

12.8 Radio, Television and Cellular Transmitting Equipment

Before a Customer installs and operates radio, television or cellular transmitters, the company shall be consulted for information on the type of electric service that is available and the special precautions that must be observed so that the operation of this equipment will not interfere with electric service to other customers.

Outdoor antennas and satellite receivers for radio or television sets shall not be erected over, under or in close proximity to the Company’s wires or any other wires carrying electric current, and shall not be attached to Company poles or Customer riser masts.
13. CUSTOMER-OWNED ELECTRIC SOURCES INCLUDING GENERATORS

13.1 General

All installations of Customer’s generating equipment (or other electric sources) require adherence to fundamental rules for the safeguard of all personnel and the Company’s equipment. The Company shall be consulted before any generating equipment is connected to any circuit which is, or can be, supplied from the Company’s distribution system. This is to assure against any unanticipated back-feed of electricity into the Company system.

13.2 Customer-Owned Standby Generators

A standby generator is intended for operation only when the normal power supply from the Company is not available.

The installation of a standby generator shall be such so as to preclude any possible feed-back of power into the Company system. This requirement is mandatory in order to provide personnel safety and to prevent equipment damage.

Standby generators producing (or being “stepped-up” to) primary voltage levels require preapproval from the Company prior to design, purchase or beginning construction. Contact the Company for required information.

13.3 Portable Standby Generators

Portable standby generators shall not be connected to building wiring without an isolating double-pole, double-throw open-transition (break-before-make) switch.

13.4 Transfer Systems

Transfer switches listed and labeled “suitable for use as service equipment” are permitted for use as main service equipment upon prior approval by the Company. All other transfer switches shall be connected on the load side of the main service equipment.

A double throw switch or contactor using an open-transition (break-before-make) sequence shall normally be provided to transfer all ungrounded conductors of an emergency lighting or power load to either the standby generator (or other electric source) or the normal supply (see Figure 41).

Closed-transition (make-before-break) and automatic transfer systems require specification submittal and shall be approved by the Company before installation.

13.5 Customer-Owned Interconnected Generators

13.5.1 General
An interconnected generator is intended for operation in parallel (i.e., simultaneous) with the normal power supply from the Company. This includes photovoltaic, wind, hydroelectric, fuel cell, cogeneration (CHP), and farm waste systems as well as traditional fossil fuel fired generators.

Direct current electric sources may be operated in parallel with the Company's system through a synchronous inverter. Inverter installations shall comply with the requirements of Sections 13.5.2.1 and 13.5.2.2 as applicable.

All interconnected systems shall be installed and maintained in accordance with NEC Article 705 as well as these specifications, and all other Company requirements. In particular, the point of connection for the output of an interconnected electric power source shall meet NEC section 705.12. Photovoltaic, fuel cell, and wind systems must meet NEC Articles 690, 692, and 694 respectively as well. No interconnected system may connect directly to the utility meter or Company equipment. For additional Company specific requirements, review and approval procedures can be obtained by contacting the Company or visiting the website http://www.centralhudson.com/dg/

13.5.2 Approval Procedures

13.5.2.1 Generators of Two (2) MW or Less

Generating equipment with a nameplate rating of two (2) MW or less and that operates in parallel with the Company's electric system shall comply with the New York State Standardized Interconnection Requirements and Application Process for New Distributed Generators. Further details may be found on Company tariffs or by contacting the Company or visiting the website http://www.centralhudson.com/dg/

13.5.2.2 Generators Greater Than Two (2) MW

Any generation equipment greater than two (2) MW shall comply with the Company's Interconnection Requirements. A copy of the Interconnection Requirements may be obtained by contacting the Company or online at the following address: http://www.centralhudson.com/pdf/dg_Interappprocess.pdf.

13.5.2.3 Net Metering

Net metering is achieved by allowing a customer's meter to register in the reverse and forward directions. When the Customer's interconnected generator is producing less energy than the customer is using, the electric meter will measure the energy passing from the Company to the Customer and spin in the forward direction. When the Customer's interconnected generator is producing more energy than the Customer is using, the electric meter will measure the excess energy passing from the Customer to the Company and spin in the backward direction. The surplus energy is subtracted, or "netted," from the energy supplied by the Company to the Customer, thus "net metered." Interconnected generation systems may be eligible based on Public Service Law (PSL) 66-J for net metering. Contact the Company or visit the website http://www.centralhudson.com/dg/ for more information on net metering.
14. INDEX TO SPECIFICATIONS AND DRAWINGS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Application (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Service Definitions</td>
</tr>
<tr>
<td>2.</td>
<td>Service Definitions - Continued</td>
</tr>
<tr>
<td>3.</td>
<td>Temporary Service - Customer Pole</td>
</tr>
<tr>
<td>4.</td>
<td>Permanent / Temporary Service - Underground Riser</td>
</tr>
<tr>
<td>5.</td>
<td>Typical Overhead Service Connection</td>
</tr>
<tr>
<td>6.</td>
<td>Common Minimum Clearances – Overhead Conductors 1000V or Less</td>
</tr>
<tr>
<td>7.</td>
<td>Overhead Construction Clearances from Private Swimming Pools – NEC 680.8</td>
</tr>
<tr>
<td>8.</td>
<td>Typical Overhead Service Connection - Low Building 300V and Less</td>
</tr>
<tr>
<td>9.</td>
<td>Load Center Meter Pole (Maximum 200A, Single-Phase, 3-Wire, 120/240V)</td>
</tr>
<tr>
<td>10.</td>
<td>Load Center Meter Pole with Current Transformers</td>
</tr>
<tr>
<td>11.</td>
<td>Typical Common Trench Configuration - Electric Ducts with Gas and Other Utilities</td>
</tr>
<tr>
<td>12.</td>
<td>Underground Service from Overhead Line</td>
</tr>
<tr>
<td>13.</td>
<td>Underground Service from Overhead Line (Meter Socket)</td>
</tr>
<tr>
<td>15.</td>
<td>Underground Service Lateral</td>
</tr>
<tr>
<td>16.</td>
<td>Vertical Separation of Lines Attached on the Same Pole Based on 2012 NESC Rule 235</td>
</tr>
<tr>
<td>17.</td>
<td>Anchor Installations</td>
</tr>
<tr>
<td>18.</td>
<td>Construction Details for 4 kV and 7.6 kV - Single-Phase Customer Lines</td>
</tr>
<tr>
<td>19.</td>
<td>General Grounds and Ground Grids - Ground Installation at Wood Pole Base - Multi-Grounded Common Neutral System</td>
</tr>
<tr>
<td>20.0</td>
<td>Underground Residential Distribution - Joint with Gas and Other Utilities</td>
</tr>
<tr>
<td>20.1</td>
<td>Underground Residential Distribution - Electric and Gas Main Installation with Other Utilities</td>
</tr>
<tr>
<td>20.2</td>
<td>Underground Residential Distribution - Road Crossing Installation</td>
</tr>
<tr>
<td>20.3</td>
<td>Underground Residential Distribution - Electric and Gas Service Installation with Other Utilities</td>
</tr>
<tr>
<td>21.</td>
<td>Underground Construction - Conduit Riser Installation - Non Ventilated</td>
</tr>
<tr>
<td>22.</td>
<td>Three-Phase Pad Specifications, 5 – 34.5 kV, 75 - 2000 kVA</td>
</tr>
<tr>
<td>23.</td>
<td>URD Transformer Box Pad and Accessories</td>
</tr>
<tr>
<td>24.</td>
<td>Single-Phase Socket Meter - One Position</td>
</tr>
<tr>
<td>25.</td>
<td>Single-Phase Socket Meter - Two or More Positions</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>Poly-Phase Wye Meter – Bank of Meters Up to and Including Six Meters</td>
</tr>
<tr>
<td>27</td>
<td>Poly-Phase Delta Meter – Bank of Meters Up to and Including Six Meters</td>
</tr>
<tr>
<td>28</td>
<td>Current Transformer Cabinet</td>
</tr>
<tr>
<td>29</td>
<td>Outdoor Donut Type Current Transformers</td>
</tr>
<tr>
<td>30</td>
<td>Approved Current Transformer Enclosures and Specifications</td>
</tr>
<tr>
<td>31</td>
<td>Separation of Electric and Gas Meters</td>
</tr>
<tr>
<td>32</td>
<td>Single-Phase Multiple Socket Meter</td>
</tr>
<tr>
<td>33</td>
<td>Grouped Metering Equipment</td>
</tr>
<tr>
<td>34</td>
<td>Grounding and Bonding Metering Equipment</td>
</tr>
<tr>
<td>35</td>
<td>Outdoor Self-Contained Meters, 320 Amps</td>
</tr>
<tr>
<td>36</td>
<td>Typical Meter Pedestal (Also for Mobile Homes)</td>
</tr>
<tr>
<td>37</td>
<td>Typical Methods of Serving a Mobile Home with Power-Supply Cord (Plug-In) - Mobile Homes Not in a Development or Park</td>
</tr>
<tr>
<td>38</td>
<td>Typical Methods of Serving a Mobile Home with Direct Wiring - Mobile Homes Not in a Development or Park</td>
</tr>
<tr>
<td>39</td>
<td>Mobile Home Multi-Meter Installation - Overhead Service - Single Entrance Cable</td>
</tr>
<tr>
<td>40</td>
<td>Mobile Home Multi-Meter Installation - Underground Service</td>
</tr>
<tr>
<td>41</td>
<td>Customer Owned Generator - Standby Operation</td>
</tr>
<tr>
<td>42</td>
<td>Underground Service Frost Loop Repair</td>
</tr>
<tr>
<td>43</td>
<td>Secondary Metering Installation to Supply Pole Mounted Communications Co. Equipment</td>
</tr>
<tr>
<td>44</td>
<td>Installation of Convenience Outlet on Distribution Pole with Secondary for Decorative Lighting and Other Small 120V Loads.</td>
</tr>
</tbody>
</table>
CENTRAL HUDSON SYSTEM

OVERHEAD

POINT OF CONNECTION:
LAST CENTRAL HUDSON POLE

SERVICE DROP

SERVICE EQUIPMENT

UNDERGROUND

POINT OF CONNECTION:
RISER, TRANSFORMER, OR SPLICE BOX

SERVICE LATERAL

SERVICE EQUIPMENT

SERVICE - ENTRANCE CONDUCTORS

SERVICE - ENTRANCE CONDUCTORS

SERVICE DEFINITIONS
5/8" MACH. BOLT & GUY HOOK THIMBLE EYE OR EQUIV.

1/4" GALV. GUY WIRE

1/4" GUY WIRE CLAMP

8' MIN. LEAD

OPTIONAL
1/2" X 12" TURNBUCKLE WITH HOOKS OR EYES

8" MIN. DIAMETER AT GROUND LINE

4'-0" X 12" DIA. LOG ANCHOR OR
3/4" X 4 1/2' SCREW ANCHOR
CHANCE CAT. NO. 4345-1
(OR EQUIV.) (SEE NOTE #8).

21'-0" MIN.
(SEE NOTE #6)

4'-0" MIN. SETTING DEPTH

CENTRAL HUDSON GAS & ELECTRIC CORP.

TEMPORARY SERVICE - CUSTOMER POLE
(SINGLE - PHASE, 200A, 120/240V MAXIMUM)
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. RECTANGULAR TIMBERS SHALL NOT BE USED IN PLACE OF A WOOD POLE.

4. WOOD BRACES OF ANY TYPE WILL NOT BE CONSIDERED AN ADEQUATE GUY.

5. PRESERVATIVE TREATED WOOD SHALL BE REQUIRED.

6. A 25 FOOT CLASS 6 POLE WILL USUALLY PROVIDE ADEQUATE CLEARANCE FROM VEHICLES UNLESS TERRAIN CAUSES A REDUCTION, IN WHICH CASE THE POLE SHOULD BE SIZED TO PROVIDE A GROUND CLEARANCE OF 15’ MINIMUM FOR PEDESTRIAN TRAFFIC AND 18’ FOR ROAD CROSSINGS. IN ANY CASE, LINE CLEARANCES SHALL BE IN ACCORDANCE WITH THE NEC.

7. POLE AND ANCHOR MUST BE ADEQUATE TO WITHSTAND 1000 LBS. PULL AT THIS POINT.

8. ANCHORS SHALL BE REQUIRED FOR ALL ROAD CROSSINGS, ALL RUNS IN EXCESS OF 50’, AND ALL PERMANENT INSTALLATIONS REGARDLESS OF LENGTH OF RUN HOWEVER, WHEN TEMPORARY POLE IS LOCATED ON THE SAME SIDE OF THE ROAD AS THE TAKEOFF POLE, NO ANCHOR WILL BE REQUIRED.

9. SEE ALSO SECTION 3.8 FOR TEMPORARY SERVICE REQUIREMENTS.
WEATHERPROOF SERVICE DISCONNECT WITH A MINIMUM CAPACITY OF 60 AMPS, 120/240V, SINGLE-PHASE.
SEE NOTE #11

POWER SUPPLY OPTION NO. 1
WEATHERPROOF BOX WITH G.F.I. RECEPTACLE
SEE NOTE #11

POWER SUPPLY OPTION NO. 2

GROUNDING ELECTRODE
SEE NOTE #10

GALVANIZED STEEL CONDUIT OR SCH. 80 PVC

DEPTH TO BE IN ACCORDANCE WITH FIGURE 11 & NEC TABLE 300.5

METER POST - SEE NOTE #8

NOTE #9

NOTE #7

BUSHING

4'-6"

8" DIAMETER, 3500 PSI CONCRETE ENCASMENT
(PERMANENT INSTALLATION ONLY)

CENTRAL HUDSON GAS & ELECTRIC CORP.

DATE 5-1-15

ELECTRIC STANDARDS

PERMANENT/TEMPORARY SERVICE - UNDERGROUND RISER
(SINGLE PHASE SERVICE, 100 TO 400 AMPS, 300 VOLS OR LESS)

DRWN. ______ DSGN. ______ APPD. ______
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS
 CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND
 STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING
 JURISDICTION.

3. THE CUSTOMER MAY SUBSTITUTE A PRE-ASSEMBLED COMBINATION METER
 SOCKET THAT IS APPROVED BY THE COMPANY, WITH A MINIMUM 60 AMP
 DISCONNECT AND WEATHERPROOF RECEPTACLES AS REQUIRED.

4. PERMANENT INSTALLATIONS SHALL BE RATED FOR 200A. A SERVICE
 DISCONNECT IS RECOMMENDED ON PERMANENT INSTALLATIONS BUT IS NOT
 REQUIRED. LINE CONDUCTORS SHALL BE LOOPED ON PERMANENT
 INSTALLATIONS IN ACCORDANCE WITH FIGURE 13.

5. FOR MOBILE HOMES SEE FIGURE 36.

6. METER POST SHALL BE LOCATED ALONG OR ADJACENT TO ENTRANCE DRIVE.
 LOCATION TO BE VERIFIED BY CENTRAL HUDSON REPRESENTATIVE. METER
 SHALL FACE ENTRANCE DRIVEWAY.

7. SECURE CONDUIT TO POST AS NEEDED.

8. METER POST SHALL BE, AT A MINIMUM, 4"X4" PRESSURE TREATED WOOD.
 ONE PIECE 10' LONG, SET MINIMUM 4' IN GROUND AND IN TRUE
 VERTICAL POSITION.

9. THE CUSTOMER SHALL PROVIDE AND INSTALL AN APPROVED METER SOCKET
 (SEE SECTION 7 FOR METER SOCKET REQUIREMENTS) WITH SUITABLE
 BACKING BOARD. THE DISTANCE FROM CENTER OF METER TO FINISHED
 GRADE SHALL BE 4' TO 5'.

10. SUPPLEMENTAL GROUNDING ELECTRODE IS REQUIRED IF GROUND
 RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.

11. DISCONNECTING MEANS AND RECEPTACLE REQUIRED FOR TEMPORARY
 SERVICES ONLY.

12. GROUNDING CONDUCTOR SHALL BE Sized IN ACCORDANCE WITH NEC
 ARTICLE 250.

ELECTRIC STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

<table>
<thead>
<tr>
<th>DRWN.</th>
<th>DSGN.</th>
<th>APPD.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERMANENT/TEMPORARY SERVICE - UNDERGROUND RISER
(SINGLE - PHASE SERVICE, 100 TO 400 AMPS, 300 VOLTS OR LESS)

DATE 5-1-15

ISSUE

APP.

APP.

GD DRAWING DO NOT REVISE MANUALLY
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE 36" OF SERVICE CONDUCTORS FOR SERVICE DROP CONNECTION.

4. THE SERVICE BRACKET AND MOUNTING THROUGH-BOLT SHALL BE PROVIDED AND INSTALLED BY THE CUSTOMER, AND SHALL WITHSTAND 1000 LBS. OF HORIZONTAL PULL.

5. STRAPS SHALL BE SECURELY FASTENED AT NOT MORE THAN 30" INTERVALS.

6. METER SOCKET PROVIDED AND INSTALLED BY CUSTOMER IN A TRUE VERTICAL POSITION. FASTEN SUPPORT TO A STRUCTURAL MEMBER.
MINIMUM CLEARANCES

1. 3’ FROM OPERABLE WINDOWS, DOORS, PORCHES, FIRE ESCAPES, BALCONIES, LADDERS, STAIRS, OR SIMILAR LOCATIONS.

2. CLEARANCES ABOVE INACCESSIBLE ROOFS OF 8’ VERTICALLY SHALL BE MAINTAINED FOR A DISTANCE OF NOT LESS THAN 3’ IN ALL DIRECTIONS FROM THE ROOF EDGE EXCEPT FOR THE FINAL SPAN WHERE THE SERVICE DROP IS ATTACHED TO THE SIDE OF THE BUILDING OR AS LISTED BELOW:
 a. 3’ WHERE ROOF HAS A SLOPE OF 4” IN 12” OR GREATER AND VOLTAGE BETWEEN CONDUCTORS IS 300V OR LESS.
 b. 3’ WHERE THE ROOF IS GUARDED AND VOLTAGE BETWEEN CONDUCTORS IS 300V OR LESS.
 c. WHERE ALL THE FOLLOWING CONDITIONS EXIST THE CONDUCTORS ARE ALLOWED TO BE AT LEAST 18” ABOVE ROOF OVERHANG ONLY:
 i. VOLTAGE BETWEEN CONDUCTORS IS 300V OR LESS.
 ii. OVERHEAD SERVICE CONDUCTORS ARE NOT MORE THAN 6’.
 iii. THE CONDUCTORS ARE TERMINATED AT A THROUGH-ROOF RISER OR APPROVED SUPPORT.

3. 10’ ABOVE FINAL GRADE FOR PEDESTRIAN ONLY SIDEWALKS FOR CONDUCTORS NOT EXCEEDING 150V TO GROUND AND SUPPORTED ON AND CABLED TOGETHER WITH A GROUNDED BARE MESSENGER.

4. 10’ ABOVE ACCESSIBLE ROOFS, DECKS, OR PROJECTIONS, PLATFORMS, OR PROJECTIONS FROM WHICH THEY MIGHT BE REACHED.

5. 12’ ABOVE FINAL GRADE, SIDEWALKS, AND RESIDENTIAL DRIVEWAYS, AND THOSE COMMERCIAL AREAS NOT SUBJECT TO TRUCK TRAFFIC WHERE VOLTAGE DOES NOT EXCEED 300V TO GROUND.

6. 15’ ABOVE THOSE AREAS LISTED IN NOTE #5 WHERE VOLTAGE EXCEEDS 300V TO GROUND.

7. 18’ ABOVE PUBLIC STREETS, PARKING AREAS, ALLEYS, ROADS, AND DRIVEWAYS OTHER THAN RESIDENTIAL PROPERTY, LAND, ORCHARD, GRAZING, OR FOREST.

8. CLEARANCES GIVEN ARE FROM NEC ARTICLE 230 FOR CUSTOMER INSTALLED OVERHEAD CONDUCTORS.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
<th>DATE 5-1-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. _______</td>
<td>COMMON MINIMUM CLEARANCES</td>
<td>ISSUE</td>
</tr>
<tr>
<td>DSGN. _______</td>
<td>OVERHEAD CONDUCTORS 100V OR LESS</td>
<td>APP.</td>
</tr>
<tr>
<td>APPD. _______</td>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>

NOTE: DO NOT REVISE MANUALLY
CLEARANCES SHOWN ARE FOR USE UP TO 50 kV TO GROUND
CLEARANCES SHOWN ARE FOR VOLTAGE TO GROUND

INSULATED CABLES, 0-750 VOLTS TO GROUND, SUPPORTED ON AND CABLED TOGETHER WITH A SOLIDLY GROUNDED BEARE MESSSENGER OR SOLIDLY GROUNDED NEUTRAL CONDUCTOR. ALL OTHER CONDUCTORS

<table>
<thead>
<tr>
<th>OVER 15Kv</th>
<th>0 THRU 15Kv</th>
<th>THROUGH 50 Kv</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FT)</td>
<td>(FT)</td>
<td>(FT)</td>
</tr>
</tbody>
</table>

A. CLEARANCE IN ANY DIRECTION FROM THE WATER LEVEL, EDGE OF POOL, BASE OF DIVING PLATFORM, OR ANCHORED RAFT.

| 22.5 | 25.0 | 27.0 |

B. CLEARANCE IN ANY DIRECTION TO THE DIVING PLATFORM, TOWER OR OBSERVATION STAND.

| 14.5 | 17.0 | 18.0 |

C. HORIZONTAL LIMIT OF CLEARANCE MEASURED FROM INSIDE WALL OF THE POOL. THIS LIMIT SHALL EXTEND TO THE OUTER EDGE OF THE STRUCTURES LISTED IN A AND B OF THIS TABLE BUT NOT LESS THAN 10 FEET.

NOTES:

1. FOR CONDUCTORS OPERATING AT VOLTAGES IN EXCESS OF 50Kv PHASE TO GROUND, CONTACT ENGINEERING FOR CLEARANCE REQUIREMENTS.

2. NO OVERHEAD CONDUCTORS ARE ALLOWED WITHIN 20 FEET HORIZONTALLY OF PUBLIC SWIMMING POOLS AS REQUIRED BY NEW YORK STATE SANITARY CODE PART 6, SUBPART 6-1.17(1).

ELECTRIC STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

OVERHEAD CONSTRUCTION CLEARANCES FROM PRIVATE SWIMMING POOLS NEC SECTION 680.8

DRWN. _____ DATE 5-1-15 ISSUE

DSGN. _____ APP.

APPD. _____ APP.
"ANCHOR EASY" PLATE MOUNTS ON ROOF UNDER SHINGLES - (PROVIDES GUY ATTACHMENT)

16" OR 24"

DETAIL BACK BRACE SUPPORT

1/4" BOLTS TO RAFTERS PLATE BETWEEN SHINGLES

ROOF PLATE - MUST BE INSTALLED SO THAT SERVICE ALIGNMENT EXTENSION FALLS WITHIN ANGLE OF GUYS.

SERVICE ALIGNMENT

RAFTER

GUYS (IF REQUIRED)

DETAIL GUY CONFIGURATION
1. All installations shall be in accordance with the specifications contained herein, the NEC, and all applicable codes and standards.

2. All installations shall be inspected by the authority having jurisdiction.

3. Back brace required fastened to structural member. See section 4.2.5 for application requirements and further details.

4. Leave 36" of service conductors for service drop connection.

5. The service bracket and mounting through-bolt shall be provided and installed by the customer, and shall withstand 1000 lbs. of horizontal pull.

6. The riser shall be bonded to the service neutral.

7. The riser support shall be as close to the roof as possible.

8. The service entrance cable or service entrance conductors shall be in galvanized steel conduit or Schedule 80 PVC (2" min.).

9. Straps shall be securely fastened at not more than 30" intervals.

10. Meter socket provided and installed by customer in a true vertical position. Fasten support to a structural member.

11. Where all the following conditions exist the conductors are allowed to be at least 18" above roof overhang only:

 a. Voltage between conductors is 300V or less
 b. Overhead service conductors are not more than 6’
 c. The conductors are terminated at a through-roof riser or approved support.
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE THESE LEADS 36" MINIMUM LENGTH.

4. SERVICE BRACKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMERS.

5. CONDUIT STRAPS AT NOT MORE THAN 4' INTERVALS; SE CABLE STRAPS AT NOT MORE THAN 30" INTERVALS.

6. POLE SHALL BE GUYED FOR MINIMUM 1000 LBS. STRAIN.

7. OUTDOOR SERVICE EQUIPMENT INSTALLED BY CUSTOMER IN ACCORDANCE WITH THE NEC.

8. GROUNDING CONDUCTOR SHALL BE PROTECTED WITH PLASTIC MOLDING FOR ITS FULL LENGTH ON POLE. INSTALL SERVICE GROUND IN ACCORDANCE WITH THE NEC ARTICLE 250.

9. BOND STEEL CONDUIT TO NEUTRAL.

10. CUSTOMER FURNISHES AND INSTALLS METER POLE. CONSULT CENTRAL HUDSON FOR POLE AND GUY REQUIREMENTS. POLE TO BE 5" MINIMUM DIAMETER AT TOP, 8" MINIMUM AT 6' FROM BUTT. NORMALLY 35 FOOT POLE EXCEPT AS OTHERWISE NEEDED FOR SERVICE DROP HEIGHT REQUIRED. POLE TO BE FULLY PRESSURE TREATED WITH PENTACHLOROPHENOL.

11. SERVICE ENTRANCE CABLE OR ENTRANCE CONDUCTORS IN 2" GALVANIZED STEEL, SCH. 40 PVC, OR ALUMINUM CONDUIT. MAXIMUM CONDUIT SIZE 3". MAXIMUM CONDUCTORS 4/0 COPPER OR EQUIVALENT.

12. METER SOCKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER, AND MOUNTED PLUMB WITH SUITABLE BACKING BOARD.

13. ALTERNATIVELY, CUSTOMER'S SERVICE CONDUCTORS MAY BE PLACED UNDERGROUND FROM THE METER TO THE SERVICE EQUIPMENT.

14. SUPPLEMENTAL GROUNDS ARE REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.

15. ALL RISERS SHALL BE ON THE NON-TRAFFIC SIDE(S) OF THE POLE AND ALLOW FOR CONDUCTOR INSTALLATION TO COMPANY SPACE ON POLE WITHOUT CONFLICT FROM OTHER UTILITIES EQUIPMENT/CABLES. WHERE THE RISER MUST BE INSTALLED FACING TRAFFIC DUE TO EXISTING OBSTACLES, CONTACT CH&GE PRIOR TO INSTALLATION.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
<th>DATE 5-1-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. _____</td>
<td>LOAD CENTER METER POLE (MAXIMUM 200A, SINGLE - PHASE, 3 - WIRE, 120/240V)</td>
<td>ISSUE</td>
</tr>
<tr>
<td>DSGN. _____</td>
<td></td>
<td>APP.</td>
</tr>
<tr>
<td>APPD. _____</td>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE THESE LEADS 36" MINIMUM LENGTH.

4. BOND STEEL CONDUIT TO NEUTRAL.

5. STRAPS AT NOT MORE THAN 4' INTERVALS.

6. 1 1/4" GALVANIZED STEEL CONDUIT, SCH. 40 PVC, OR ALUMINUM CONDUIT FURNISHED AND INSTALLED BY CUSTOMER.

7. POLE SHALL BE GUYED FOR MINIMUM 1000 LBS. STRAIN.

8. SERVICE BRACKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER.

9. CUSTOMER FURNISHES AND Installs METER POLE. CONSULT CENTRAL HUDSON FOR POLE TO BE 5" MINIMUM DIAMETER AT TOP, 8" MINIMUM AT 6' FROM BUTT. NORMALLY 35 FOOT POLE EXCEPT AS OTHERWISE NEEDED. FOR SERVICE DROP HEIGHT REQUIRED. POLE TO BE FULLY PRESSURED TREATED WITH PENTACHLOROPHENOL IN OIL.

10. METER SOCKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER, AND MOUNTED PLUMB WITH SUITABLE BACKING BOARD.

11. GROUNDING CONDUCTOR UNDER PROTECTIVE COVER AND SIZED IN ACCORDANCE WITH NEC ARTICLE 250.

12. SUPPLEMENTAL GROUNDS ARE REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.
NOTES:

1. THE MINIMUM CLEARANCE FROM GAS TO OTHER UTILITIES SUCH AS WATER & SEWER SHALL BE 12". CONSULT WITH OTHER UTILITIES OR REVIEW LOCAL ORDINANCES FOR ADDITIONAL CLEARANCE REQUIREMENTS. IF 12" CLEARANCE IS NOT POSSIBLE, REFER TO FIGURE 20 OF THE SPECIFICATIONS AND REQUIREMENTS OF GAS INSTALLATIONS.

2. GAS SHALL BE INSTALLED ON THE FIELD SIDE OF THE ELECTRIC.

3. SPACING SHALL BE MAINTAINED FOR CONCRETE ENCASED DUCTS.

4. COMPACTED SELECT BACKFILL MAY BE ON-SITE MATERIAL PROVIDED IT CONTAINS NO ROCKS OR STONES OVER 6" IN DIAMETER, ROOTS, STUMPS OR CONSTRUCTION DEBRIS.

5. REFER TO FIGURE 20 FOR DEFINITION OF SANDPADDING.

6. LOCATE TRACER WIRE A SUFFICIENT DISTANCE FROM PLASTIC PIPE TO MINIMIZE TRACER WIRE TO PIPE CONTACT.

7. FOR BURIAL DEPTH OF CONDUCTORS 1000 VOLTS AND UNDER SEE TABLE ON SHEET 2. FOR CONDUCTORS OVER 1000 VOLTS SEE TABLE ON SHEET 3.

8. FOR DIRECT BURIED CABLES NOT ENCASED IN CONCRETE PROVIDE AND INSTALL MARKER TAPE.

9. CONTACT "CALL BEFORE YOU DIG" AT 811 AND OBTAIN A MARKOUT PRIOR TO BREAKING GROUND.

ELECTRIC STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

TYPICAL COMMON TRENCH CONFIGURATION

ELECTRIC DUCTS W/GAS AND OTHER UTILITIES

DATE 5-1-15

ISSUE

APP.

APP.
Minimum Cover Requirements, 0 to 1000 Volts, Nominal, Burial in Inches (in.)

Type of Wiring Method or Circuit

<table>
<thead>
<tr>
<th>Type of Wiring Method or Circuit</th>
<th>Direct Burial Cables or Conductors</th>
<th>Rigid Metal Conduit</th>
<th>Nonmetallic Raceways Listed for Direct Burial Without Concrete Encasement or Other Approved Raceways</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Locations Not Specified Below</td>
<td>IN.</td>
<td>IN.</td>
<td>IN.</td>
</tr>
<tr>
<td>In Trench Below 2-in. Thick Concrete or Equivalent</td>
<td>24</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Under a Building</td>
<td>18</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Under Minimum of 4-in. Thick Concrete Exterior Slab with No Vehicular Traffic and the Slab Extending Not Less Than 6 in. Beyond the Underground Installation</td>
<td>18</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Under Streets, Highways, Roads, Alleys, Driveways, and Parking Lots</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>One and Two-Family Dwelling Driveways and Outdoor Parking Areas, and Used Only for Dwelling-Related Purposes</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>In or Under Airport Runways, Including Adjacent Areas Where Trespassing Prohibited</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Notes:
1. Cover is defined as the shortest distance in inches measured between a point on the top surface of any direct-buried conductor, cable, conduit, or other raceway and the top surface of finished grade, concrete, or similar cover.
2. Raceways approved for burial only where concrete encased shall require concrete envelope not less than 2 in. thick.
3. Lesser depths shall be permitted where cables and conductors rise for terminations or splices or where access is otherwise required.
4. Depth indicated allowed when cables or conductors are in a raceway or type MC or MI cable identified for direct burial. See NEC articles 330 and 332 for definitions of MC and MI cable respectively.
5. Where solid rock prevents compliance with the cover depths specified in this table, the wiring shall be installed in metal or nonmetallic raceway permitted for direct burial. The raceways shall be covered by a minimum of 50 mm (2 in.) of concrete extending down to rock.
6. Table is derived from NEC 300.5 for reference only. Where this table and NEC Table 300.5 differ, the NEC shall take precedence.

Central Hudson Gas & Electric Corp.

Typical Common Trench Configuration

Electric Ducts W/Gas Main and Other Utilities
Minimum Cover Requirements, 1kV to 40kV, Nominal, Burial in Inches (in.) (Note 1)

<table>
<thead>
<tr>
<th>Circuit Voltage</th>
<th>General Conditions (not otherwise specified)</th>
<th>Special Conditions (use if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 1</td>
<td>Column 2</td>
</tr>
</tbody>
</table>

NOTES:
1. COVER IS DEFINED AS THE SHORTEST DISTANCE IN INCHES MEASURED BETWEEN A POINT ON THE TOP SURFACE OF ANY DIRECT-BURIED CONDUCTOR, CABLE, CONDUIT, OR OTHER RACEWAY AND THE TOP SURFACE OF FINISHED GRADE, CONCRETE, OR SIMILAR COVER.
2. LISTED BY A QUALIFIED TESTING AGENCY AS SUITABLE FOR DIRECT BURIAL WITHOUT ENCASEMENT. ALL OTHER NONMETALLIC SYSTEMS SHALL REQUIRE 2 IN. OF CONCRETE OR EQUIVALENT ABOVE CONDUIT IN ADDITION TO THE TABLE DEPTH.
3. THE SLAB SHALL EXTEND A MINIMUM OF 6 IN. BEYOND THE UNDERGROUND INSTALLATION, AND A WARNING RIBBON OR OTHER EFFECTIVE MEANS SUITABLE FOR THE CONDITIONS SHALL BE PLACED ABOVE THE UNDERGROUND INSTALLATION.
4. UNDERGROUND DIRECT-BURIED CABLES THAT ARE NOT ENCASED OR PROTECTED BY CONCRETE AND ARE BURIED 30 IN. OR MORE BELOW GRADE SHALL HAVE THEIR LOCATION IDENTIFIED BY A WARNING RIBBON THAT IS PLACED IN THE TRENCH AT LEAST 12 IN. ABOVE THE CABLES.
5. LESSER DEPTHS SHALL BE PERMITTED WHERE CABLES AND CONDUCTORS RISE FOR TERMINATIONS OR SPLICES OR WHERE ACCESS IS OTHERWISE REQUIRED.
6. WHERE SOLID ROCK PREVENTS COMPLIANCE WITH THE COVER DEPTHS SPECIFIED IN THIS TABLE, THE WIRING SHALL BE INSTALLED IN METAL OR NONMETALLIC RACEWAY PERMITTED FOR DIRECT BURIAL. THE RACEWAYS SHALL BE COVERED BY A MINIMUM OF 2 IN. OF CONCRETE EXTENDING DOWN TO ROCK.
7. IN INDUSTRIAL ESTABLISHMENTS, WHERE CONDITIONS OF MAINTENANCE AND SUPERVISION ENSURE THAT QUALIFIED PERSONS WILL SERVICE THE INSTALLATION, THE MINIMUM COVER REQUIREMENTS, FOR OTHER THAN RIGID METAL CONDUIT AND INTERMEDIATE METAL CONDUIT, SHALL BE PERMITTED TO BE REDUCED 6 IN. FOR EACH 2 IN. OF CONCRETE OR EQUIVALENT PLACED ENTIRELY WITHIN THE TRENCH OVER THE UNDERGROUND INSTALLATION.
8. TABLE IS DERIVED FROM NEC 300.50 FOR REFERENCE ONLY, WHERE THIS TABLE AND NEC TABLE 300.50 DIFFER, THE NEC SHALL TAKE PRECEDENCE.
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. CUSTOMER TO PROVIDE 600V TRIPLEXED (2-4/0 AWG & 1-2/0 AWG.) CABLE TYPE USE. CONSTRUCTION AS FOLLOWS: STRANDED, CONCENTRIC ROUND, CLASS B "EC" GRADE ALUMINUM CONDUCTOR INSULATED WITH 5/64" (.080") HEAT AND WEATHER RESISTANT CROSSLINKED POLYETHYLENE (XLP) OR ETHYLENE-PROPYLENE RUBBER (EPR). CABLE TO MEET THE REQUIREMENTS AS SET FORTH IN THE LATEST REVISION OF IPCA PUBLICATIONS S-68-524 (XLP) OR S-19-81 (EPR). CABLE TO BE FURNISHED BY CUSTOMER MUST BE LONG ENOUGH TO EXTEND 4 FT. ABOVE POINT "A" WITHOUT A SPLICE. CONSULT CENTRAL HUDSON FOR LOCATION OF SERVICE BRACKET (POINT "A").

4. IF GALVANIZED STEEL IS USED, THE CUSTOMER SHALL PROVIDE AND INSTALL A GROUND ROD AND GROUND WIRE OF SUFFICIENT LENGTH TO EXTEND 4' ABOVE POINT "A". CUSTOMER TO INSTALL GROUND CLAMPS. GROUND WIRE TO BE INSTALLED IN SERVICE CONDUIT OR SHALL BE PROTECTED BY PLASTIC MOLDING. COMPANY TO MAKE GROUND CONNECTION AT POINT "A". ADDITIONAL GROUND ROD (REQUIRED FOR PRIMARY RISERS) TO BE CONNECTED WITH CONTINUOUS WIRE LOOPED THROUGH ROD CONNECTORS AT A MINIMUM DISTANCE OF 6 FEET FROM FIRST GROUND ROD.

5. MIN. 2" GALV. STEEL OR SCH. 80 PVC CONDUIT WITH 90° LONG RADIUS BEND, TO BE FURNISHED AND INSTALLED BY CUSTOMER. ADEQUATE DRAINAGE SHALL BE PROVIDED AT BOTTOM OF THE BEND. RISERS ON POLES ALONG ROADWAYS MUST BE GALV. STEEL, AND MUST BE INSTALLED BY CUSTOMER ON THE FIELD SIDE OF THE POLE AWAY FROM APPROACHING TRAFFIC. ALL RISERS INSTALLED ON POLES IN EXCESS OF 12' FROM ROADWAYS SHALL HAVE STAND-OFF BRACKETS SUITED TO PIPE SIZE AND TYPE AND FIRMLY LAG-BOLTED TO POLE. STAND-OFF BRACKETS SHALL BE INSTALLED AT INTERVALS OF 8 FEET MINIMUM.

6. ALL UNDERGROUND CABLE INSTALLATION REQUIREMENTS, INCLUDING COVER REQUIREMENTS, GROUNDING, AND PROTECTION FROM DAMAGE SHALL BE IN ACCORDANCE WITH ARTICLE 300 OF THE NEC.

7. DIRECT BURIED SERVICE LATERALS CROSSING UNDER PAVED AREAS SHALL BE IN PVC OR ABS SCH. 40 CONDUIT. SEAL ALL CONDUIT ENDS WITH SEALING COMPOUND. IF ENTIRE RUN IS IN CONDUIT, AN APPROVED SLIP JOINT CONNECTOR SHALL BE REQUIRED.

8. USE GALVANIZED STEEL CONDUIT (2" MIN.) OR SCH. 80 PVC FOR ABOVE GROUND PORTION.

9. METER SOCKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER AND MOUNTED IN TRUE VERTICAL POSITION. SEE FIGURE 13 FOR ADDITIONAL REQUIREMENTS.

Central Hudson Gas & Electric Corp.

<table>
<thead>
<tr>
<th>Electric Standards</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. __________</td>
<td>UNDERGROUND SERVICE FROM OVERHEAD LINE</td>
</tr>
<tr>
<td>DSGN. ________</td>
<td>(SINGLE PHASE RESIDENTIAL SERVICE, 200 AMPS, 300 Volts OR LESS)</td>
</tr>
<tr>
<td>APPD. ________</td>
<td>DATE 5-1-15</td>
</tr>
<tr>
<td></td>
<td>ISSUE</td>
</tr>
<tr>
<td></td>
<td>APP.</td>
</tr>
<tr>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREFIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. METER SOCKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER AND MOUNTED IN TRUE VERTICAL POSITION.

4. LOOP LIVE CONDUCTORS ON ALL UNDERGROUND SERVICES 1φ AND 3φ (SINGLE PHASE SHOWN).

5. USE GALVANIZED STEEL CONDUIT (2" MIN) OR SCH. 80 PVC FOR ABOVE GROUND PORTION.
SINGLE CUSTOMER

PAD MOUNT TRANSFORMER

CUSTOMER OWNED PRIMARY

CUSTOMER OWNED SECONDARY

RISER POLE

CUSTOMER OWNED SECONDARY

UTILITY METER(S)

TWO TO FOUR CUSTOMERS

PAD MOUNT TRANSFORMER

COMPANY OWNED PRIMARY

CUSTOMER OWNED SECONDARY

RISER POLE

CUSTOMER OWNED SECONDARY

COMPANY OWNED PRIMARY

UTILITY METER(S)

CUSTOMER OWNED SECONDARY

UTILITY METER(S)

CUSTOMER OWNED PRIMARY

PAD MOUNT TRANSFORMER

FIVE OR MORE CUSTOMERS

PAD MOUNT TRANSFORMER

COMPANY OWNED PRIMARY

COMPANY OWNED SECONDARY

COMPANY OWNED PRIMARY

RISER POLE

COMPANY OWNED SECONDARY

UTILITY METER(S)

COMPANY OWNED SECONDARY

PAY MOUNT TRANSFORMER

COMPANY OWNED SECONDARY

UTILITY METER(S)
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS
 CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING
 JURISDICTION.

3. THE SPECIFICATIONS CONTAINED IN THIS FIGURE REFER TO SINGLE - PHASE
 RESIDENTIAL SERVICE, 200 TO 400 AMPS, 300 VOLTS OR LESS, AND TO URD
 CONTRACTS.

4. THE CUSTOMER SHALL LEAVE A MINIMUM 6’ HAND COIL AT GRADE LEVEL
 ADJACENT TO POINT OF TERMINATION. THE CABLE END SHALL BE PROTECTED
 WITH WEATHER RESISTANT TAPE OR END CAP. IF THE TRANSFORMER SERVES
 ONLY ONE LOT/UNIT, THE CUSTOMER SHALL PROVIDE AND INSTALL ALL
 PRIMARY CABLES FROM COMPANY’S EQUIPMENT TO THE TRANSFORMER PAD.
 THE COMPANY WILL PROVIDE THE TRANSFORMER AND MAKE ALL CONNECTIONS
 AT IT.

5. HAND DIGGING SHALL BE REQUIRED WITHIN 3’ OF COMPANY TRANSFORMER PAD.

6. ALL UNDERGROUND CABLE INSTALLATION REQUIREMENTS, INCLUDING COVER
 REQUIREMENTS, GROUNDING, AND PROTECTION FROM DAMAGE SHALL BE IN
 ACCORDANCE WITH FIGURE 11 AND ARTICLE 300 OF THE NEC.

7. DIRECT BURIED SERVICE LATERALS CROSSING UNDER PAVED AREAS SHALL BE
 IN PVC OR ABS SCH. 40 CONDUIT. SEAL ALL CONDUIT ENDS WITH SEALING
 COMPOUND. IF ENTIRE RUN IS IN CONDUIT, AN APPROVED SLIP JOINT
 CONNECTOR SHALL BE REQUIRED.

8. USE GALVANIZED STEEL CONDUIT (2” MIN.) OR SCH. 80 PVC FOR ABOVE
 GROUND PORTION.

9. METER SOCKET SHALL BE FURNISHED AND INSTALLED BY CUSTOMER AND
 MOUNTED IN TRUE VERTICAL POSITION. SEE FIGURE 13 FOR ADDITIONAL
 REQUIREMENTS.

10. PROTECTIVE BUSHING TO BE INSTALLED BY CUSTOMER.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
<th>DATE 5-1-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. _____</td>
<td>UNDERGROUND SERVICE LATERAL</td>
<td>ISSUE</td>
</tr>
<tr>
<td>DSGN. _____</td>
<td></td>
<td>APP.</td>
</tr>
<tr>
<td>APPD. _____</td>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>

(ODD DRAWING
DO NOT REVISE MANUALLY)
NOTES:

2. MINIMUM CLEARANCE BETWEEN FIRST AND SECOND POWER CIRCUIT IS 16” PLUS 0.4 INCHES FOR EACH 1kV IN EXCESS OF 8.7 kV.

3. SECONDARIES, NOT ON A COMMON RACK AT THE POLE, OR CABLES HAVING EFFECTIVELY GROUNDED CONTINUOUS METAL SHEATH HAVE THE FOLLOWING MINIMUM VERTICAL SPACING BETWEEN CONDUCTORS:

<table>
<thead>
<tr>
<th>SPAN LENGTH</th>
<th>VERTICAL CLEARANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150</td>
<td>4”</td>
</tr>
<tr>
<td>150-200</td>
<td>6”</td>
</tr>
<tr>
<td>200-250</td>
<td>8”</td>
</tr>
<tr>
<td>250-300</td>
<td>12”</td>
</tr>
</tbody>
</table>

4. THE VERTICAL SEPARATION ON THE POLE SHALL BE INCREASED SO THAT THE LOWEST SUPPLY CONDUCTOR (0-50kV) WHEN SAGGED AT 60°F FINAL SHALL NOT SAG LOWER THAN THE STRAIGHT LINE JOINING THE POINTS OF SUPPORT OF THE TOP COMMUNICATION CABLE OR WIRE.

5. VERTICAL CLEARANCE AT THE POLE SHALL BE ADJUSTED SUCH THAT THE CLEARANCE AT ANY POINT IN THE SPAN BETWEEN ANY UPPER CONDUCTOR AND THE CONDUCTOR BELOW IT IS NOT LESS THAN 75% OF THAT REQUIRED AT THE POLE. DETERMINATION OF CLEARANCE IS WITH UPPER CONDUCTOR AT MAXIMUM SAG, EITHER 120°F OR 32°F. 1/2” ICE; AND LOWER CONDUCTOR AT MINIMUM SAG.

6. FOR CLEARANCES BETWEEN CENTRAL HUDSON DISTRIBUTION LINES AND ELECTRIC DISTRIBUTION LINES OWNED BY OTHER UTILITIES OR ANY ELECTRIC TRANSMISSION LINES ATTACHED TO THE SAME POLE, CONTACT ELECTRIC SYSTEM DESIGN PERSONNEL.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
<th>DATE 5-1-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. _____</td>
<td>VERTICAL SEPARATION</td>
<td></td>
</tr>
<tr>
<td>CLEAR</td>
<td>OF LINES ATTACHED ON THE SAME POLE</td>
<td></td>
</tr>
<tr>
<td>ENGR. _____</td>
<td>BASED ON 2012 NESC RULE 235</td>
<td></td>
</tr>
<tr>
<td>APPD. _____</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CROSSPLATE ANCHOR

CUT NARROW TRENCH FOR ROD
LEAVING A MAXIMUM OF
UNDISTURBED EARTH. ALIGN ROD
AND ANCHOR WITH GUY. DO NOT
BEND ROD.

ANCHOR ROD WITH TRIPLE EYE:
18000 LB: ¾" X 8'
32000 LB: 1" X 10'

COVER ANCHOR WITH 8" OF STONE 5" TO
10" IN DIAMETER AND FILL VEIDS WITH
WELL TAMPERED SOIL. INCREASE TO 24" OF
STONE FOR 1" ROD IN SOFT SOIL.

ANCHOR CROSS PLATE:
18000 LB: 18'
32000 LB: 24'

NOTE:
1. IF STONE IS NOT AVAILABLE, A MIXTURE OF CRUSHED STONE, ROCK
 DUST AND CEMENT CAN BE SUBSTITUTED.
2. IN SOFT PLASTIC CLAY, LOOSE SAND AND GRAVEL, FILL OR SILT. USE
 A 24" CROSSPLATE FOR 18000 LB INSTALLATIONS AND 24" OF STONE
 FOR 32000 LB INSTALLATIONS.

ANCHOR HOLE
16" 16"
24" 24"

ANCHOR ROD SIZE
¾" ⅜"
1" 1"

ANCHOR CROSS PLATE

DETAIL OF CROSSPLATE

ELECTRIC STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

ANCHOR INSTALLATIONS

DATE 5-1-15

DRAWN. _____
CLEAR. _____
ENG. _____
APPD. _____
NOTES:
1. ROCK ANCHOR MUST BE INSTALLED IN LINE WITH GUY PULL.
2. ROD TO BE SCREWED TIGHT AND THEN GROUTED IN WITH CEMENT.
3. EXPANSION WEDGE MUST BE AT LEAST 12" IN SOLID ROCK.
4. SEE FIGURE 18 FOR GUY POLE ATTACHMENT DETAILS.
5. DRILL 2 1/2" HOLE FOR 1" ROCK ANCHOR AND 2" HOLE FOR 3/4" ROCK ANCHOR.
SCREW TYPE SWAMP ANCHOR:
18000 LB: DOUBLE HELIX (12" & 10"")
32000 LB: QUAD HELIX (10", 12", 14" & 14")

45° NORMALLY

SWAMP OR SAND

FIRM SOIL

SWAMP ANCHORS ARE TO BE USED AND INSTALLED TO PENETRATE FIRM SOIL UNDER SWAMPS AND WETLANDS.
STRAIGHT LINE & SMALL ANGLES

ACSR 0° - 40° (NOTE 4)
COPPER 0° - 60°

PHASE AND NEUTRAL CONSTRUCTION

CONSTRUCTIONS DETAILS FOR 4 kV AND 7.6 kV SINGLE PHASE CUSTOMER LINES
4.8 kV phase and phase for areas where neutral is unavailable

NOTES:
1. 40" minimum clearance is required between lowest power facilities and communications facilities.
2. For larger angles deadend each way.
3. Secondary rack locations on transformer pole.
4. The allowable angles indicated are only for No. 4 Cu. or No. 2 ACSR conductors with 175 ft. average adjacent spans.
5. All guy wires must be grounded to the neutral. Provide and install fiberglass guy strain insulators when guys are within two feet of phase wires or equipment rated higher than 300V. Insulators shall extend to at least one foot below lowest phase conductor or equipment. Insulators shall have a rated dry flashover voltage at least double the nominal line-to-line voltage and a wet flashover voltage at least as high as the nominal line to line voltage available on the pole. Insulator ultimate strength must be at least equal to the rated breaking strength of the guy in which it is installed.

Central Hudson Gas & Electric Corp.

Construction details for 4 kV and 7.6 kV single phase customer lines

Drwn. _____
Clear _____
Engr. _____
Appd. _____

Date 5-1-15

Issue
App.
App.

Redraw: Do not revise manually
NOTES:
1. CONNECTING WIRES TO BE SLACK TO AVOID BREAKAGE DUE TO FROST ACTION.
2. PLASTIC MOLDING TO COVER GROUND WIRE ALONG FULL RUN ON POLE.
3. AT THE LAST GROUND INSTALLATION ON PRIMARY LINES, INCLUDING PRIVATE SPURS, DRIVE ONE ADDITIONAL ROD AND CONNECT AS SHOWN.
4. ADDITIONAL ROD TO BE CONNECTED WITH CONTINUOUS WIRE LOOPED THROUGH ROD CONNECTORS.
5. A COMMON NEUTRAL CONDUCTOR REQUIRE A MINIMUM OF FOUR GROUNDS AT SEPARATE LOCATIONS PER MILE EITHER AS EQUIPMENT GROUNDS OR AS SEPARATE INSTALLATIONS.
6. IF NECESSARY TO SPLICE GROUNDING CONDUCTOR ABOVE GROUND, USE COMPRESSION SPLICE.
1. JOINT USE, RANDOM LAY, DIRECT BURIAL CABLE INSTALLATIONS INVOLVING BOTH POWER AND COMMUNICATIONS CABLES ARE LIMITED TO THOSE APPLICATIONS IN WHICH THE POWER CABLES DO NOT EXCEED:
 A. 5,300 VOLTS PHASE TO PHASE FOR UNGROUNDED (DELTA) OPERATION OR
 B. 22,000 VOLTS PHASE TO GROUND FOR GROUNDED (WYE) OPERATION

2. WHERE THE POWER CABLE EXCEEDS 300 VOLTS TO GROUND, THE INSTALLATION SHALL INCLUDE A BARE OR SEMICONDUCTING JACKETED GROUNDED CONDUCTOR IN CONTINUOUS CONTACT WITH EARTH (EXCEPT FOR SHORT SECTIONS SUCH AS CONDUIT UNDER A HIGHWAY).

3. MARKER TAPES SHALL BE INSTALLED IN ALL URD INSTALLATIONS.

4. ELECTRIC CABLE AND GAS PIPE SHALL BE LAID IN THE TRENCH WITHOUT TENSION.

5. DIRECT BURIED CABLES AND GAS MAINS/SERVICES SHALL NOT BE PLACED IN LOCATIONS FOR WHICH THE SURFACE IS NOT READILY ACCESSIBLE (SUCH AS UNDER SIDEWALKS AND ALONG PAVED ROADWAYS). DIRECT BURIED CABLES MAY CROSS UNDER PAVED ROADS, HOWEVER, ALL MAIN ROADS SHALL HAVE AT LEAST ONE SPADE DUCT INSTALLED ALONG WITH THE CABLE. SPADE DUCTS ARE OPTIONAL FOR PARKING LOTS AND SIDE ROADS BASED UPON INDIVIDUAL CIRCUMSTANCES.

6. TRACER WIRE SHALL BE INSTALLED FOR ALL JOINT URD'S AS PER FIGURES 17 & 18 OF CENTRAL HUDSON'S SPECIFICATIONS AND REQUIREMENTS FOR GAS INSTALLATIONS.

TRENCH INSTALLATIONS

7. GAS AND ELECTRIC FACILITIES SHALL NOT BE INSTALLED UNLESS THE SURFACE IS AT, OR NO MORE THAN 6" BELOW FINAL GRADE. MINIMUM COVER REQUIREMENTS SHALL BE MET BOTH DURING CONSTRUCTION AND AFTER FINAL GRADING.

8. TRENCHES SHALL BE EXCAVATED TO ADEQUATE WIDTH AND DEPTH TO ACCOMMODATE THE FACILITIES TO BE INSTALLED AND TO ASSURE SUFFICIENT COVER AS SPECIFIED.

9. CONSULT CENTRAL HUDSON FOR TRENCHES OVER 5 FEET DEEP, AS THEY REQUIRE SHORING AND/OR SLOPING.

10. FOR THE PURPOSE OF THESE STANDARDS, THE PREFERRED SANDPADDING SHALL BE IMPORTED NATURAL OR MANUFACTURED STONE DUST, CUSHION SAND, SCREENED BANK RUN, CONCRETE SAND, OR FINE AGGREGATE. SANDPADDING SHALL CONSIST OF HARD, STRONG, DURABLE PARTICLES FREE FROM CLAY, LOAM, OR HARMFUL SUBSTANCES. THE MATERIAL SHALL BE SCREENED TO CONTAIN NO SHARP STONES, OR STONES GREATER THAN 1/4 INCH IN DIAMETER. THE MATERIAL SHALL BE SIGNIFICANTLY DIFFERENT IN COLOR OR CONSISTENCY TO READILY DISTINGUISH IT FROM SOILS SURROUNDING THE TRENCH. ACCEPTABLE OPTIONS INCLUDE NEW YORK STATE DOT APPROVED SOURCES WITH A GENERAL RANGE OF GRADATION AT 90-100% PASSING #4"; 90-100% PASSING #6"; 0-80% PASSING #80 SCREEN; AND 0-10% PASSING #200 SCREEN.

11. THE TRENCH BOTTOM SHALL BE SMOOTH AND FREE OF ALL STONE AND SHARP OBJECTS. A 6" LAYER OF SANDPADDING SHALL BE PLACED ON THE BOTTOM OF THE TRENCH PRIOR TO THE INSTALLATION OF ELECTRIC AND/OR GAS UTILITIES.

12. THE ELECTRIC AND COMMUNICATION CABLES SHALL BE COVERED WITH A MINIMUM 12" OF SANDPADDING. THE GAS MAINS AND SERVICES SHALL BE COVERED WITH A MINIMUM OF 6" OF SANDPADDING.

13. PLACE WOODEN STAKES AS OFTEN AS NEEDED TO MAINTAIN REQUIRED SEPARATION. THE TRACER WIRE MAY BE TAPE TO THE STAKES TO MINIMIZE CONTACT WITH THE PLASTIC PIPE.

CLEARANCES

14. A MINIMUM CLEARANCE OF 12" SHALL BE MAINTAINED BETWEEN GAS PIPING AND OTHER UNDERGROUND UTILITIES OR STRUCTURES.

15. ELECTRIC CABLES SHALL NOT BE INSTALLED WITH LESS THAN 12" SEPARATION FROM OTHER UNDERGROUND STRUCTURES EXCEPT AS PROVIDED BY THESE STANDARDS.

16. NO NON-POOL RELATED ELECTRIC CABLES SHALL BE LOCATED WITHIN 5 FEET OF SWIMMING POOLS OR THEIR AUXILIARY EQUIPMENT.

18. FOR GAS MAIN/SERVICES AND CABLE (ELECTRIC, COMMUNICATIONS, ETC.) CROSSINGS WITH LESS THAN 12" BUT GREATER THAN OR EQUAL TO 6", THE CABLES SHALL BE PLACED IN A SCHEDULE 40 PLASTIC DUCT WHICH EXTENDS, WHERE POSSIBLE, 2 FEET BEYOND EACH END OF THE SECTION OF GAS MAIN/SERVICE WHERE THE CLEARANCE IS LESS THAN 12". SECONDARY AND/OR SERVICE CABLES SHALL NOT BE PLACED IN THE SAME DUCT AS PRIMARY CABLES. COMMUNICATION CABLES MAY BE PLACED IN A DUCT WITH OTHER 600 VOLT OR LESS CABLES. CLEARANCES BETWEEN GAS MAINS/Services AND CABLE LESS THAN 6" ARE NOT ACCEPTABLE.

ELECTRIC
STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

DRAWN. __________________________ CENTRAL HUDSON GAS & ELECTRIC CORP. DATE 5-1-15
CLEAR
ENGR. __________________________
APP. __________________________
1. Indicated trench depth is for 2" or 4" gas mains. For 6" mains the trench depth shall be 52". For electric-only installations, the depth of cover shall be as designated on Figure 11 and in NEC Section 300.

2. A minimum of 40" depth-of-cover required over electric and other cable utilities for cultivated land. Land owner may require additional depth-of-cover.

3. Trench width for 2" or 4" gas mains shall be a minimum 28" plus width required by telephone and cablevision. For 6" mains the minimum width will be 30" plus telephone and cablevision requirements. For electric-only installation, the minimum trench width shall be 18" plus telephone, cablevision, and other utility requirements.

4. Locate plastic pipe a sufficient distance from wooden stake to minimize tracer wire to pipe contact.

5. All dimensions are minimums.
NOTES:

1. MINIMUM PIPE DEPTH SHALL BE 24" OR AS REQUIRED BY LOCAL AUTHORITIES.

2. IF ROAD CROSSING IS OPEN CUT, CONDUITS ARE NOT REQUIRED FOR GAS FACILITIES. HOWEVER, SPECIFIED SPACING SHALL BE MAINTAINED.

3. A SEPARATE 1" OR LARGER IPS SCHEDULE 40 PVC CONDUIT WITH PULL STRING, SHALL BE INSTALLED ALONG WITH OTHER ROAD CROSSING CONDUITS TO ACCOMMODATE TRACER WIRE INSTALLATION.

4. LOCATE TRACER WIRE A SUFFICIENT DISTANCE FROM PLASTIC PIPE TO MINIMIZE TRACER WIRE TO PIPE CONTACT.
NOTES:
1. CONSULT CENTRAL HUDSON FOR LOCATION OF THE GAS METER SET.
2. TRENCH WIDTH SHALL BE A MINIMUM 24".
3. LOCATE PLASTIC PIPE A SUFFICIENT DISTANCE FROM WOODEN STAKE TO MINIMIZE TRACER WIRE TO PIPE CONTACT.
4. FOR DIRECT BURIED CABLES NOT ENCASED IN CONCRETE PROVIDED AND INSTALL MARKER TAPE 12" ABOVE CABLE.
NOTES:
1. DRY WELL NOT REQUIRED IF DUCTS TERMINATE IN A MANHOLE OR PULLBOX.
2. DUCTS SHOULD SLOPE TOWARDS DRY WELL WHEN DRY WELL IS USED. OTHERWISE SLOPE DUCTS TOWARD MANHOLE OR PULLBOX.
3. SEAL TOP OF DUCT AFTER CABLE IS IN PLACE.
4. CONNECTING WIRES TO BE SLACK TO AVOID BREAKAGE DUE TO FROST ACTION.
5. LOCATE RISER CONDUIT ON SIDE OF POLE OPPOSITE TO TRAFFIC DIRECTION.
6. SUPPLEMENTAL GROUND IS REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.
FIGURE 1

GROUND ROD

GROUND ROD

GROUND ROD

GROUND CABLE TO TRANSFORMER (6' MIN. ABOVE PAD)

CRUSHED ROCK OR WASHED STONE

CRUSHED ROCK OR WASHED STONE

CRUSHED ROCK OR WASHED STONE

GROUNDING ELECTRODE CONDUCTOR (BARE COPPER TINNED WIRE). NOTE III

PLAN

6' SLACK MINIMUM.

COVER

SLOPE SURFACE TO DIVERT SURFACE WATER

PROVIDE 90' AND EXTEND CONDUITS BEYOND WATER LINE. SEAL ALL CONDUIT CONNECTIONS WATERTIGHT.

ELEVATION

CRUSHED ROCK OR WASHED STONE

GROUND ROD

CENTRAL HUDSON GAS & ELECTRIC CORP.

THREE PHASE PAD SPECIFICATIONS
5-34.5 KV
75-2000 KVA

DATE 5-1-15

ISSUE

APP.

APP.
6"X 6"X 4" PRECAST MANHOLE
(CHG&E STANDARD CAT. NO. MC-100)

NOTES:
1. REINFORCED CONCRETE.
2. KNOCKOUTS - 7"X 30", 2 PER SIDE. FOUR SIDES.

WEIGHT:
BOX = 7899 LBS.
COVER = 2370 LBS.

AVAILABLE MANUFACTURERS:
LAKELANDS H.V.
WOODARDS CONCRETE
HV PRECAST INC.
CRANESVILLE BLOCK CO.

TYPE 2 COVER
(CHG&E STANDARD CAT. NO. MC - 102)

TYPE 1 MANHOLE COVER
(CHG&E STANDARD CAT. NO. MC - 103)

TYPE 4 COVER
(CHG&E STANDARD CAT. NO. MC - 102 M)

750 - 1000 KVA TRANSFORMER COVER
(CHG&E STANDARD CAT. NO. MC - 101 M)

CENTRAL HUDSON GAS & ELECTRIC CORP.

ELECTRIC STANDARDS

DRWN. _______
DSGN. _______
APPD. _______

THREE PHASE PAD SPECIFICATIONS
5 - 34.5 KV
75 - 2000 KVA

DATE 5-1-15
ISSUE
APP.
APP.

OSS DRAWING
DO NOT REVISE MANUALLY
NOTES:

1. THE CUSTOMER WILL USUALLY PROVIDE THE PAD FOR THREE PHASE PAD-MOUNTED TRANSFORMERS. THE
 STANDARD IS INTENDED AS A GUIDE FOR PROVIDING THE SPECIFICATIONS FOR PAD INSTALLATIONS
 APPLICABLE TO PAD-MOUNTED TRANSFORMERS OF VARIOUS KVA SIZE AND DIMENSIONS. THE STANDARD
 INSTALLATION USES A PRE-CAST CONCRETE BASE AND COVER. THE CONCRETE BASE IS OF UNIFORM SIZE
 AND UTILIZES COVERS WITH DIFFERENT SIZED WINDOW OPENINGS TO ACCOMMODATE THE KVA SIZE OF
 THE PAD-MOUNTED TRANSFORMER. DETAILED SPECIFICATIONS AND INSTALLATION REQUIREMENTS ARE
 PROVIDED IN PAGES 1 TO 3 OF THIS STANDARD.

2. THE SIDES AND REAR OF THE PAD SHALL BE A MINIMUM OF TEN (10) FEET FROM THE WINDOWS AND
 FIRE ESCAPES AND A MINIMUM OF THREE (3) FEET (TEN (10) FEET PREFERRED) FROM ALL BUILDINGS,
 FENCES, OR OTHER OBSTRUCTIONS WHICH WILL IMPED THE FREE FLOW OF COOLING AIR AROUND THE
 TRANSFORMER. THE FRONT OF THE PAD (WINDOW SIDE) SHALL HAVE A MINIMUM OF TEN (10) FEET OF
 UNOBSSTRUCTED WORKING SPACE.

3. ACCESS TO PAD AREA BY VEHICLE MUST BE POSSIBLE AT ALL TIMES TO INSURE PROPER OPERATION AND
 MAINTENANCE FUNCTIONS.

4. STONE FOR BASE AND SIDES OF THE BOX PAD SHALL BE 3/4" MINIMUM TO 1-1/2" MAXIMUM CRUSHED
 ROCK OR WASHED STONE. 1/2" CRUSHED ROCK OR WASHED STONE MAY BE USED FOR TOP 6" IN
 LOCATIONS WHERE WINDOW BREAKAGE MAY BE A PROBLEM. FOR THE BASE, STONE SHALL BE PLACED ON
 UNDISTURBED OR WELL TAMPERED EARTH.

5. AREA AROUND THE BOX PAD SHALL BE GRADED SO THAT SURFACE WATER WILL DRAIN AWAY FROM CRUSHED
 STONE OIL CONTAINMENT.

6. THE BOX PAD SHALL BE INSTALLED SUCH THAT THE TOP SURFACE IS LEVEL TO WITHIN 1/4" HIGH TO
 LOW.

7. IN GENERAL, 5" CONDUIT SHOULD BE USED FOR BOTH PRIMARY AND SECONDARY CONDUCTORS. HOWEVER,
 THE SECONDARY CONDUIT SHOULD BE SIZED ACCORDING TO THE SECONDARY CONDUCTORS BEING
 INSTALLED.

8. PERMANENT SUPPORT SHALL BE PROVIDED FOR THE SECONDARY CONDUCTORS SUCH THAT THE TOTAL
 WEIGHT SUPPORTED BY EACH TRANSFORMER BUSHING SHALL NOT EXCEED TEN POUNDS. THIS SINGLE RUNS
 OF 500 MCM COPPER AND LARGER, 1000 MCM AL AND LARGER AND PRACTICALLY ALL MULTIPLE
 CONDUCTOR RUNS NEED TO BE SUPPORTED TO LIMIT THE STRESS ON THE BUSHINGS.

9. CENTRAL HUDSON RESERVES THE RIGHT TO REQUIRE SUITABLE BARRIERS IN TRAFFIC AREAS TO REDUCE
 THE PROBABILITY OF DAMAGE DUE TO TRUCKS, AUTOMOBILES, CONSTRUCTION EQUIPMENT, AND THE
 LIKE. SUITABLE BARRIERS MIGHT BE 4" (MINIMUM) STEEL PIPE, FILLED WITH CONCRETE, SET 4 FT.
 DEEP AND EXTENDING 3 TO 4 FEET ABOVE GROUND. BARRIERS SHOULD BE SET BEYOND THE OIL
 CONTAINMENT IN LOCATIONS WHICH WILL INTERCEPT VEHICLES YET NOT INTERFERE WITH THE
 INSTALLATION OR REMOVAL OF THE TRANSFORMER.

10. ALL GROUNDING MUST BE IN ACCORDANCE WITH COMPANY SPECIFICATIONS.

11. SIZE THE GROUNDING ELECTRODE CONDUCTOR AS FOLLOWS:
 A. 200A SECONDARY SERVICES: #4 AWG.
 B. 400A SECONDARY SERVICES: #1/0 AWG.
 C. LARGER THAN 400A SECONDARY SERVICES: #3/0 AWG.
GROUND ROD

GROUND CABLE TO TRANSFORMER (6" MIN. SLACK ABOVE PAD).

GROUNDING ELECTRODE CONDUCTOR (BARE COPPER TINNED WIRE). NOTE #6

TRENCH

14"

28"

56"

GROUND ROD

1/4" - 18 THREADED STAINLESS STEEL INSERTS

6' SLACK MINIMUM.

PROVIDE 90' AND EXTEND CONDUITS BEYOND WATER LINE. SEAL ALL CONDUIT CONNECTIONS WATERTIGHT.

SECTION A-A

TRENCH

43"

30"

14"

BOX PAD

GROUND ROD

SEE FIGURE 20 FOR TRENCH SPECIFICATIONS

BOX PAD ACCESSORIES

BLANK COVER

10" EXTENSION

ADAPTER COVER

ELECTRIC STANDARDS

CENTRAL HUDSON GAS & ELECTRIC CORP.

DATE 5-1-15

URD TRANSFORMER BOX PAD AND ACCESSORIES

DRMN. _____ CLEAR _____ ENGR. _____ APPD. _____ ISSUE APP.
NOTES:

1. PLACE PAD ON UNDISTURBED EARTH, THE TOP FOUR INCHES OF WHICH MAY BE FILL FOR GRADING AND LEVELING. SUCH FILL MUST BE WELL TAMPERED BEFORE INSTALLING THE BOX PAD.

2. SIDES AND REAR OF PAD SHALL BE A MINIMUM OF TEN FEET FROM WINDOWS AND FIRE ESCAPES AND A MINIMUM OF THREE FEET (TEN FEET DESIRED) FROM ALL BUILDINGS, FENCES OR OTHER OBSTRUCTIONS WHICH WILL IMPede THE FREE FLOW OF COOLING AIR AROUND THE TRANSFORMER. FRONT OF PAD SHALL HAVE A MINIMUM OF TEN FEET OF UNOBSERVED WORKING SPACE.

3. MAXIMUM PERMISSIBLE TRANSFORMER WEIGHT: 2,760 LBS. FOR PADS WITH A FOUR INCH INSIDE LIP.

4. ADAPTER COVER TO BE USED WHEN TRANSFORMER WILL NOT COMPLETELY COVER OPENING IN BOX PAD.

5. ACCESS TO PAD AREA BY VEHICLE MUST BE POSSIBLE AT ALL TIMES - WITHIN 10 FEET OF ROADWAY OR DRIVEWAY - TO ENSURE PROPER OPERATION AND MAINTENANCE FUNCTIONS.

6. ALL GROUNDING MUST BE IN ACCORDANCE WITH COMPANY SPECIFICATIONS. SIZE THE GROUNDING ELECTRODE CONDUCTOR AS FOLLOWS:
 A. 200A SECONDARY SERVICES: #4 AWG
 B. 400A SECONDARY SERVICES: #1/0 AWG
 C. LARGER THAN 400A SECONDARY SERVICES: #3/0 AWG
120/240 VOLT
USE WATER TIGHT FITTING

TO CUSTOMER SERVICE EQUIPMENT

4' TO 5'
FLOOR OR FINISHED GRADE

120/208 VOLT
USE WATER TIGHT FITTING

TO CUSTOMER SERVICE EQUIPMENT

BY-PASS SEE NOTE 4

SOCKET TYPE METER

SINGLE PHASE SOCKET METER - ONE POSITION
120/240 VOLT-3 WIRE, WIRE SIZE UP TO 250 MCM
120/208 VOLT-3 WIRE, WIRE SIZE UP TO 250 MCM
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE WORKING CLEARANCE OF NOT LESS THAN THE WIDTH OF THE EQUIPMENT OR 30” WIDE (CENTERED ON EQUIPMENT) WHICHEVER IS LARGER, 6’-6” MEASURED FROM GRADE (OR TOP OF FINISHED FLOOR), AND 4’-0” IN FRONT OF EQUIPMENT.

4. A LEVER BY-PASS BOX IS REQUIRED FOR: ANY COMMERCIAL INSTALLATION, ANY INDUSTRIAL INSTALLATION, TRAFFIC SIGNALS, LANDLORD METERS IN MULTI-TENANT BUILDINGS WITH FOUR OR MORE UNITS, AND ANY OTHER INSTALLATION WHERE SPACE IS UTILIZED BY MEDICAL PERSONNEL (E.G. DOCTORS, DENTISTS, ETC.) OR BY LIFE-SUPPORTING EQUIPMENT.

5. METER SOCKET TO BE PROVIDED AND INSTALLED BY CUSTOMER IN A TRUE VERTICAL POSITION.

6. GROUNDED CONDUCTOR-CONNECT TO SOCKET THROUGH NEUTRAL STUD ASSUMING SERVICE WITH DISCONNECT MEANS.

7. A COMPATIBLE 5th JAW SHALL BE INSTALLED IN THE METER SOCKET AT THE 6 OR 9 O’CLOCK POSITION. THE 5th JAW SHALL BE MANUFACTURER APPROVED FOR THE METER SOCKET IN WHICH IT IS INSTALLED AND BE INSTALLED PER MANUFACTURER SPECIFICATIONS.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. _____</td>
<td>SINGLE PHASE SOCKET METER - ONE POSITION</td>
</tr>
<tr>
<td>DSGN. _____</td>
<td>120/240 VOLT-3 WIRE: WIRE SIZE UP TO 250 MCM</td>
</tr>
<tr>
<td>APPD. _____</td>
<td>120/208 VOLT-3 WIRE: WIRE SIZE UP TO 250 MCM</td>
</tr>
</tbody>
</table>

DATE 5-1-15

ISSUE

APP.

APP.
120/240 VOLT - 3 WIRE
120/208 VOLT - 3 WIRE
WIRE SIZE UP TO 250 MCM INCLUSIVE

METER SAFETY SWITCH OR CIRCUIT BREAKER
OF APPROVED SIZE WHEN MORE THAN
(6) METERS ARE REQUIRED
SEE NOTE 4.

LOAD

LINE

LOCKNUTS & BUSHINGS

TO CUSTOMER SERVICE
EQUIPMENT

ALTERNATE

SEALABLE SERVICE RACEWAY

LOCKNUT & BUSHING

4" TO 5"

2" MINIMUM LENGTH NIPPLE

LINE

NOTE 6

LOAD

LOCKNUT & BUSHING

TO CUSTOMER SERVICE
EQUIPMENT

FIN. FLOOR

PREFERRED

CENTRAL HUDSON GAS & ELECTRIC CORP.

DATE 5-1-15

SINGLE PHASE SOCKET METER
-TWO OR MORE POSITIONS.

ELECTRIC STANDARDS

DRWN. ______
DSGN. ______
APPD. ______

ISSUE

APP.

APP.
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE WORKING CLEARANCE OF NOT LESS THAN THE WIDTH OF THE EQUIPMENT OR 30” WIDE (CENTERED ON EQUIPMENT) WHICHEVER IS LARGER, 6’-6” MEASURED FROM GRADE (OR TOP OF FINISHED FLOOR), AND 4’-0” IN FRONT OF EQUIPMENT.

4. WHERE SERVICE IS FROM THE CENTRAL HUDSON UNDERGROUND NETWORK THE CUSTOMER SHALL INSTALL A MAIN DISCONNECT TO TERMINATE THE LATERAL PROVIDED BY THE COMPANY.

5. A LEVER BY-PASS IS REQUIRED FOR: ANY COMMERCIAL INSTALLATION, ANY INDUSTRIAL INSTALLATION, TRAFFIC SIGNALS, LANDLORD METERS IN MULTI-TENANT BUILDINGS WITH FOUR OR MORE UNITS, AND ANY OTHER INSTALLATION WHERE SPACE IS UTILIZED BY MEDICAL PERSONNEL (E.G. DOCTORS, DENTIST, ETC.) OR BY LIFE SUPPORTING EQUIPMENT.

6. METERS MAY BE INSTALLED BELOW TROUGH AS WELL AS ABOVE TROUGH WHEN INDOORS.
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. CONDUCTORS SIZED ACCORDING TO LOAD. USE WATERTIGHT FITTING IN HUB WHEN INSTALLED OUTSIDE.

4. CONNECTOR TO BE SUPPLIED BY CUSTOMER.

5. LEAVE WORKING CLEARANCE OF NOT LESS THAN THE WIDTH OF THE EQUIPMENT OR 30" WIDE (CENTERED ON EQUIPMENT) WHICHEVER IS LARGER, 6'-6" MEASURED FROM TOP OF GRADE (OR TOP OF FINISHED FLOOR), AND 4'-0" IN FRONT OF EQUIPMENT.

6. WHERE SERVICE IS FROM CENTRAL HUDSON'S UNDERGROUND NETWORK THE CUSTOMER SHALL INSTALL A MAIN DISCONNECT TO TERMINATE THE LATERAL PROVIDED BY CENTRAL HUDSON.

7. A LEVER BY-PASS IS REQUIRED FOR: ANY COMMERCIAL INSTALLATION, ANY INDUSTRIAL INSTALLATION, TRAFFIC SIGNALS, LANDLORD METERS IN MULTI-UNIT TENANT BUILDINGS WITH FOUR OR MORE UNITS, AND ANY OTHER INSTALLATION WHERE SPACE IS UTILIZED BY MEDICAL PERSONNEL (E.G. DOCTORS, DENTISTS, ETC.) OR BY LIFE-SUPPORTING EQUIPMENT.

8. SINGLE PHASE METER CONNECTIONS TO BE BALANCED ACROSS PHASES.

9. LINE AND LOAD CONDUCTORS MUST NOT BE INSTALLED IN THE SAME TROUGH OR CONDUIT.

10. METER SOCKETS TO BE PROVIDED AND INSTALLED BY CUSTOMER.

11. A COMPATIBLE 5th JAW SHALL BE INSTALLED IN THE METER SOCKET AT THE 9 O'CLOCK POSITION. THE 5th JAW SHALL BE MANUFACTURER APPROVED FOR THE METER SOCKET IN WHICH IT IS INSTALLED AND BE INSTALLED PER MANUFACTURER SPECIFICATIONS.

ELECTRIC STANDARDS

<table>
<thead>
<tr>
<th>DRAWN</th>
<th>DSGN.</th>
<th>APPD.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTRAL HUDSON GAS & ELECTRIC CORP.

POLYPHASE WYE METER

BANK OF METERS UP TO AND INCLUDING SIX METERS

120/208 VOLT - 3 WIRE SINGLE PHASE AND 120/208 - 4 WIRE 3 PHASE WYE

DATE 5-1-15

ISSUE

APP.

APP.
3 WIRE SINGLE PHASE
SOCKET METER
120/240 VOLT UP TO
250 MCM INCLUSIVE

GROUNDING CONNECTION

TO CUSTOMER SERVICE
EQUIPMENT (SUB-LOAD)

4'-0" MIN.
5'-0" MAX.

FINISHED GRADE OR FLOOR

SERVICE
4 WIRE - 3 PHASE
DELTA

MASTER SAFETY
SWITCH OR
CIRCUIT BREAKER
OF APPROVED
SIZE WHEN MORE
THAN SIX (6)

SEE NOTE #8

CONDUCTORS SIZED ACCORDING
total load

SOLDER OR
APPROVED CONNECTORS

SERVICE WIRE TRough

HIGH LEG POSITION

BY-PASS HANDLE

4 WIRE THREE PHASE
SOCKET METER
120/240 VOLT DELTA
UP TO 250 MCM INCLUSIVE

DELTA CONNECTIONS
φ1 - φ2 = 240
φ2 - φ3 = 240
φ1 - φ3 = 240
φ1 - N = 120
φ2 - N = 120

TO CUSTOMER SERVICE
EQUIPMENT (SUB-LOAD)

GROUNDING CONNECTION

Note 1

Note 2

Note 3

Note 4

Note 5

Note 6

Note 7

Note 8

Note 9

Note 10
NOTES:
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.
2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION
3. CONDUCTORS Sized ACCORDING TO LOAD. USE WATERTIGHT FITTING IN HUB WHEN INSTALLED OUTSIDE.
4. CONNECTOR TO BE SUPPLIED BY CUSTOMER.
5. LEAVE WORKING CLEARANCE OF NOT LESS THAN THE WIDTH OF THE EQUIPMENT OR 30" WIDE (CENTERED ON EQUIPMENT) WHICHEVER IS LARGER, 6'-6" MEASURED FROM GRADE (OR TOP OF FINISHED FLOOR), AND 4'-0" IN FROM OF EQUIPMENT.
6. WHERE SERVICE IS FROM CENTRAL HUDSON’S UNDERGROUND NETWORK THE CUSTOMER SHALL INSTALL A MAIN DISCONNECT TO TERMINATE THE LATERAL PROVIDED BY CENTRAL HUDSON.
7. A LEVER BY-PASS IS REQUIRED FOR: ANY COMMERCIAL INSTALLATION, ANY INDUSTRIAL INSTALLATION, TRAFFIC SIGNALS, LANDLORD METERS IN MULTI-TENANT BUILDINGS WITH FOUR OR MORE UNITS, AND ANY OTHER INSTALLATION WHERE SPACE IS UTILIZED BY MEDICAL PERSONNEL (E.G. DOCTORS, DENTISTS, ETC.) OR BY LIFE-SUPPORTING EQUIPMENT.
8. SINGLE PHASE METER CONNECTIONS TO BE BALANCED ACROSS PHASES.
9. LINE AND LOAD CONDUCTORS MUST NOT BE INSTALLED IN THE SAME TROUGH OR CONDUIT.
10. METER SOCKETS TO BE PROVIDED AND INSTALLED BY CUSTOMER.
METER MOUNTING BOARD
3/4" PLYWOOD OR EQUIVALENT

VOLTAGES FOR
WYE CONNECTIONS

\[\phi_1 - \phi_2 = 208 \]
\[\phi_2 - \phi_3 = 208 \]
\[\phi_1 - \phi_3 = 208 \]
\[\phi_1 - N = 120 \]
\[\phi_2 - N = 120 \]
\[\phi_3 - N = 120 \]

POLYPHASE METER MOUNT
(SEE NOTE #4)

METERING TRANSFORMER
CABINET BY CUSTOMER
REFER TO FIG. 30 FOR
APPROVED MANUFACTURERS.

1 1/4" X 2"
NIPPLE

LOCKNUTS &
BUSHINGS

HIGH OR OFF LEG
(\(\phi_3\)) TO BE PLACED
IN TOP POSITION.

MAIN
DISCONNECT

SERVICE
4 WIRE
3 PHASE

CONTRACTOR TO
MARK LEADS AT
WEATHERHEAD

FINISHED FLOOR

CENTRAL HUDSON GAS & ELECTRIC CORP.

CURRENT TRANSFORMER CABINET
(4 WIRE - 3 PHASE OR 3 WIRE SINGLE PHASE METERING)
(MAXIMUM CAPACITY - 800 AMPERES)

DRAWN.

DSGN.

APPD.

DATE 5-1-15

ISSUE

AP.

APP.

NOTE: DRAWING
DO NOT REVISE MANUALLY
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. COMPANY MUST BE CONSULTED FOR LOCATION OF METER AND TRANSFORMER CABINET.

4. NOT MORE THAN ONE CONDUCTOR TO BE CONNECTED TO EACH LINE AND LOAD STUD.

5. FOR REMOTE MOUNTING, CONDUCTORS FROM CURRENT TRANSFORMER SHALL NOT EXCEED 90 FEET.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. ______</td>
<td>CURRENT TRANSFORMER CABINET</td>
</tr>
<tr>
<td>DSGN. ______</td>
<td>(4 WIRE- 3 PHASE OR 3 WIRE SINGLE PHASE METERING)</td>
</tr>
<tr>
<td>APPD. ______</td>
<td>(MAXIMUM CAPACITY- 800 AMPERES)</td>
</tr>
</tbody>
</table>

DATE 5-1-15

ISSUE

APP.

APP.
CURRENT TRANSFORMERS

NOTE #3

USE 1/2"x3" OR MACHINE BOLTS

THRBOLT

ALTERNATE INSTALLATION

SERVICE BRACKET INSTALLED BY CUSTOMER BELOW CURRENT TRANSFORMERS.

1 1/4" CONDUIT NOTE #7 TO CUSTOMER SERVICE EQUIPMENT

3/4" BACKING BOARD

16" 36" MIN.

18" MIN.

4' TO 5'

OUTDOOR DONUT TYPE CURRENT TRANSFORMERS

CENTRAL HUDSON GAS & ELECTRIC CORP.
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. CUSTOMER TO LEAVE ENOUGH CABLE TO REACH THIS POINT.

4. CONDUITS MAY BE RUN ON INSIDE WALL SEE ALTERNATE INSTALLATION.

5. WHERE MORE THAN ONE CONDUCTOR PER PHASE IS REQUIRED, CONDUITS MUST BE GROUPED AS CLOSE TOGETHER AS POSSIBLE. ALL CONDUCTORS SHALL HAVE SLACK SUFFICIENT TO PROTRUDE THROUGH INSTRUMENT TRANSFORMER.

6. CONTRACTOR TO TAG ALL CONDUCTORS AT TOP OF RISER.

7. IF MORE THAN TWO (2) BENDS OR GREATER THAN 25’ IN LENGTH, USE 1-1/2” CONDUIT.

8. CENTRAL HUDSON SUPPLIES - CURRENT TRANSFORMER BRACKET, CURRENT TRANSFORMERS, AND METER WIRE.

 CENTRAL HUDSON INSTALLS - METER AND CURRENT TRANSFORMERS.

 CUSTOMER SUPPLIES - ALL OTHER MATERIALS.

 CUSTOMER INSTALLS - METER SOCKET, CURRENT TRANSFORMER BRACKET, METER WIRE, AND ALL OTHER MATERIALS.
NOTES:

1. EIGHT 1/2" DIA. BOLTS TO BE SUPPLIED FOR EACH C.T. POSITION.

2. SPACER TO BE SUPPLIED PER SPACER DETAIL.

3. CONTRACTOR TO OBTAIN APPROVAL FROM C.H.G. & E. PRIOR TO PURCHASE.

4. LOCATION OF CABINET SHALL BE APPROVED BY C.H.G. & E. PRIOR TO MOUNTING. CABINETS INSTALLED OUTDOORS SHALL BE RATE FOR SUCH.

5. ALL FIGURES NOT DRAWN TO SCALE.

<table>
<thead>
<tr>
<th># OF BUSS BARS</th>
<th># OF SPACERS</th>
<th>BOLT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1 3/4"</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2 1/4"</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3 3/4"</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>4 1/4"</td>
</tr>
</tbody>
</table>

BOLTS TO BE SUPPLIED WITH A FLAT WASHER, LOCK WASHER AND NUT.
1. All installations shall be in accordance with the specifications contained herein, the NEC, and all applicable codes and standards.

2. All installations shall be inspected by the authority having jurisdiction.
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. LEAVE WORKING CLEARANCE OF NOT LESS THAN THE WIDTH OF THE EQUIPMENT OR 30” WIDE (CENTERED ON EQUIPMENT) WHICHEVER IS LARGER, 6’-6” MEASURED FROM GRADE (OR TOP OF FINISHED FLOOR), AND 4’-0” IN FRONT OF EQUIPMENT.

4. A LEVER BY-PASS IS REQUIRED FOR: ANY COMMERCIAL INSTALLATION, ANY INDUSTRIAL INSTALLATION, TRAFFIC SIGNALS, LANDLORD METERS IN MULTI-TENANT BUILDINGS WITH FOUR OR MORE UNITS, AND ANY OTHER INSTALLATION WHERE SPACE IS UTILIZED BY MEDICAL PERSONNEL (E.G. DOCTORS, DENTISTS, ETC.) OR BY LIFE SUPPORTING EQUIPMENT.

5. CUSTOMER TO PROVIDE AND INSTALL METER ENCLOSURE.

6. LINE TERMINALS TO ACCEPT #4 TO 250 MCM, LOAD TERMINALS TO ACCEPT #6 TO 1/0.

7. FIFTH TERMINAL TO BE PROVIDED AND INSTALLED BY CUSTOMER AT NINE O’CLOCK POSITION WHEN SUPPLY VOLTAGE IS 120/208.

<table>
<thead>
<tr>
<th>Electric Standards</th>
<th>Central Hudson Gas & Electric Corp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drwn. _____</td>
<td>SINGLE PHASE MULTIPLE SOCKET METER</td>
</tr>
<tr>
<td>Dsgn. _____</td>
<td>120 AND 240 VOLT-3 WIRE</td>
</tr>
<tr>
<td>Appd. _____</td>
<td>120 AND 208 VOLT-3 WIRE</td>
</tr>
<tr>
<td>Date 5-1-15</td>
<td>ISSUE</td>
</tr>
<tr>
<td></td>
<td>APP.</td>
</tr>
<tr>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>
DIMENSIONS FOR GROUPED METERING EQUIPMENT

REQUIREMENTS:

A. MINIMUM HORIZONTAL AND VERTICAL SPACE BETWEEN METER CENTERS 9”.

B. MINIMUM DISTANCE LOWEST METER CENTER FROM: FLOOR 24” (INDOOR) AND GRADE LEVEL 30” (OUTDOOR).

C. MAXIMUM DISTANCE HIGHEST METER CENTER FROM: FINAL GRADE OR FLOOR LEVEL 72”.

CENTRAL HUDSON GAS & ELECTRIC CORP.

ELECTRIC STANDARDS
DRWN. __________
DSGN. __________
APPD. __________

DATE 5-1-15
ISSUE
APP.
APP.
NOTES:
1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. CUSTOMER TO SUPPLY ALL EQUIPMENT AND INSTALL, WHERE NECESSARY, PROPER WATERPROOFING ON OR IN THEIR SERVICE EQUIPMENT.

4. INDIVIDUAL COVERS AND LOCKING PROVISIONS FOR EACH METER SOCKET ARE REQUIRED.

5. MORE THAN SIX (6) METER SOCKETS PER SERVICE LOCATION SHALL REQUIRE A SEALABLE MAIN DISCONNECT SWITCH AND CABLE PULLING SECTION.

6. NOT TO BE USED FOR 277/480 V SERVICES.

7. EACH METER SHALL BE PERMANENTLY MARKED AS TO THE SPECIFIC PREMISE SERVED.
WHERE METAL WATER PIPE IS IN DIRECT CONTACT WITH EARTH FOR 10 FT. OR MORE AND ELECTRICALLY CONTINUOUS IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. (ARTICLE 250)

METER SOCKET

SERVICE ENTRANCE CONDUCTORS

COPPER GROUND WIRE REQUIRED. SIZE PER NEC ARTICLE 250.

1-5/8" X 8' COPPERWELD OR GALVANIZED GROUND ROD FOR SUPPLEMENTARY GROUND IS REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.

METAL WATER PIPING

WATER METER

GROUNDING AND BONDING METERING EQUIPMENT
WHERE THE WATER PIPE IS NOT IN DIRECT CONTACT WITH EARTH FOR 10 FT. OR MORE AND IS NOT ELECTRICALLY CONTINUOUS
SEE NATIONAL ELECTRIC CODE (ARTICLE 250)

METER SOCKET

SERVICE ENTRANCE CONDUCTORS

COPPER GROUND WIRE REQUIRED. SIZE PER NEC
ARTICLE 250

6' MIN SEPARATION BETWEEN RODS

5/8" X 8' COPPERWELD OR GALVANIZED GROUND ROD

SUPPLEMENTAL GROUND ROD(S) ARE REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.

METAL WATER PIPING

WATER METER

CENTRAL HUDSON GAS & ELECTRIC CORP.

ELECTRIC STANDARDS

DRWN. DSGN. APPD.

GROUNDING AND BONDING METERING EQUIPMENT

DATE 5-1-15

ISSUE

APP.

APP.

OCD DRAWING DO NOT REVISE MANUALLY
METHOD FOR TERMINATING GROUNDS IN A REMOTE METER SOCKET

TO CUSTOMER SERVICE EQUIPMENT

COPPER OR BRONZE CONNECTOR

COPPER GROUND WIRE REQUIRED. SIZE PER NEC ARTICLE 250.

SUPPLEMENTAL GROUND ROD(S) ARE REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53.

5/8" COPPERWELD OR GALVANIZED GROUND RODS

GROUNDING AND BONDING METERING EQUIPMENT
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREFIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. THE SOCKET SHALL BE PROVIDED AND INSTALLED BY CUSTOMER RATED FOR 320 AMPS CONTINUOUS WITH FOUR (4) TERMINALS FOR SINGLE PHASE AND SEVEN (7) TERMINALS FOR THREE PHASE. ALL SOCKETS SHALL BE PROVIDED WITH A LOCKING JAW TYPE AND MANUALLY OPERATED BYPASS SWITCH.

4. THE LINE SIDE SERVICE CONDUCTORS SHALL BE CONNECTED TO THE TOP TERMINALS OF THE METER SOCKET.

5. CUSTOMER TO PROVIDE, WHERE NECESSARY, PROPER WATERPROOFING ON OR IN THEIR SERVICE EQUIPMENT.
METER POST - SEE NOTE #9

30' MAX DISTANCE FROM METER PEDESTAL TO MOBILE HOME

NOTE #10

WEATHERPROOF SERVICE DISCONNECT WITH A MINIMUM CAPACITY OF 200 AMPS, 120/240, SINGLE PHASE.

POWER SUPPLY OPTION NO. #1 WEATHERPROOF BOX WITH G.F.I. RECEPTACLE.

POWER SUPPLY OPTION NO. #2

CUSTOMER TO PROVIDE GALVANIZED STEEL CONDUIT OR SCH. 80 PVC (2" MIN.)
USE BUSHING ON UNDERGROUND END SECURELY FASTEN TO SUPPORT.

SEE NOTES #5 & #6

NOTE #4

BUSHING

5/8" X 8'
GROUNDING ELECTRODE
SEE NOTE #12

COPPER GROUND WIRE
SEE NOTE #12

8" DIAMETER, 3500 PSI CONCRETE ENCASEMENT (PERMANENT INSTALLATION ONLY)
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

4. ALL UNDERGROUND CABLE INSTALLATION REQUIREMENTS, INCLUDING COVER REQUIREMENTS, GROUNDING, AND PROTECTION FROM DAMAGE SHALL BE IN ACCORDANCE WITH FIGURE 11 AND ARTICLE 300 OF THE NEC.

5. INDIVIDUAL MOBILE HOMES: CUSTOMER TO TERMINATE CABLE ON RISER POLE IN ACCORDANCE WITH FIGURE 12.

6. MOBILE HOME PARKS: CUSTOMER TO LEAVE A MIN. 5'-0" HANDCOIL AT GROUND LEVEL AT INDICATED POINT OF TERMINATION. CABLE END TO BE PROTECTED WITH TAPE OR END CAPS.

7. THE CUSTOMER MAY SUBSTITUTE A PRE-ASSEMBLED COMBINATION METER SOCKET THAT IS APPROVED BY THE COMPANY, WITH A MINIMUM 60 AMP DISCONNECT AND WEATHERPROOF RECEPTACLES AS REQUIRED.

8. MOBILE HOME PARKS WITH APPROVED UNDERGROUND ELECTRIC DISTRIBUTION: THE COMPANY WILL PROVIDE AND INSTALL THE UNDERGROUND SERVICE LATERAL.

9. METER POST SHALL BE, AT A MINIMUM, 4"X4" PRESSURE TREATED WOOD. ONE PIECE, 10' LONG, SET MINIMUM 4' IN GROUND AND IN TRUE VERTICAL POSITION.

10. THE CUSTOMER SHALL PROVIDE AND INSTALL AN APPROVED METER SOCKET (SEE SECTION 7 FOR METER SOCKET REQUIREMENTS) WITH SUITABLE BACKING BOARD (IF NECESSARY). THE DISTANCE FROM CENTER OF METER TO FINISHED GRADE SHALL BE 4' TO 5'.

11. SECURE CONDUIT TO POST AS NEEDED.

12. SUPPLEMENTAL GROUNDS ARE REQUIRED IF GROUND RESISTANCE IS GREATER THAN 25 OHMS. SEE NEC SECTION 250.53. SIZE GROUND WIRE PER NEC ARTICLE 250.

<table>
<thead>
<tr>
<th>ELECTRIC STANDARDS</th>
<th>CENTRAL HUDSON GAS & ELECTRIC CORP.</th>
<th>DATE 5-1-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWN. ___________</td>
<td>TYPICAL METER PEDESTAL (ALSO FOR MOBILE HOMES)</td>
<td>ISSUE</td>
</tr>
<tr>
<td>DSGN. _________</td>
<td>(SINGLE PHASE SERVICE, 200 TO 400 AMPS, 300 VOLTS OR LESS)</td>
<td>APP.</td>
</tr>
<tr>
<td>APPD. _________</td>
<td></td>
<td>APP.</td>
</tr>
</tbody>
</table>

GOVERNMENT DRAWING
DO NOT REVISE MANUALLY
CUSTOMER’S SERVICE POLE AND SERVICE EQUIPMENT WITHIN 30’ OF MOBILE HOME

SERVICE DROP FROM CENTRAL HUDSON

CUSTOMER OWNED POLE

CUSTOMER’S SERVICE ENTRANCE CABLE

METER

CUSTOMER’S SERVICE EQUIPMENT
SEE FIGURE 9 FOR MOBILE HOME POLE SERVICE

5’ MAX
4’ MIN

30’ MAXIMUM

POWER-SUPPLY CORD IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE ARTICLE 550

CENTRAL HUDSON GAS & ELECTRIC CORP.
TYPICAL METHODS OF SERVING A MOBILE HOME WITH POWER-SUPPLY CORD (PLUG-IN)
MOBILE HOMES NOT IN A DEVELOPMENT OR PARK
CUSTOMER’S SERVICE POLE MORE THAN 30’ FROM MOBILE HOME WITH CUSTOMER’S SERVICE EQUIPMENT MOUNTED ON A PEDESTAL

SERVICE DROP FROM CENTRAL HUDSON

CUSTOMER OWNED POLE

CUSTOMER’S SERVICE ENTRANCE CABLE

METER

CUSTOMER’S SERVICE EQUIPMENT MOUNTED ON PEDESTAL

30’ MAXIMUM

POWER-SUPPLY CORD IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE ARTICLE 550

SEPARATION AS REQ’D SO THAT PEDESTAL IS WITHIN 30’ OF MOBILE HOME

3 WIRE SEE NEC 230

CENTRAL HUDSON GAS & ELECTRIC CORP.

TYPICAL METHODS OF SERVING A MOBILE HOME WITH POWER-SUPPLY CORD (PLUG-IN) MOBILE HOMES NOT IN A DEVELOPMENT OR PARK
UNDERGROUND SERVICE FROM ELECTRIC CO. OWNED POLE WITH METER AND CUSTOMER’S SERVICE EQUIPMENT MOUNTED ON A PEDESTAL

SEE FIG. 12 FOR UNDERGROUND SERVICE OFF CENTRAL HUDSON POLE

INSTALL PEDESTAL MIN 10' FROM POLE

METER AND CUSTOMER'S SERVICE EQUIPMENT MOUNTED ON PEDESTAL

POWER-SUPPLY CORD IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE ARTICLE 550

CENTRAL HUDSON GAS & ELECTRIC CORP.

TYPICAL METHODS OF SERVING A MOBILE HOME WITH POWER-SUPPLY CORD (PLUG-IN) MOBILE HOMES NOT IN A DEVELOPMENT OR PARK
CUSTOMER'S SERVICE POLE AND SERVICE EQUIPMENT WITH DIRECT WIRING TO MOBILE HOME

SERVICE DROP FROM CENTRAL HUDSON

CUSTOMER OWNED POLE

CUSTOMER'S SERVICE ENTRANCE CABLE

METER

CUSTOMER'S SERVICE EQUIPMENT - MUST BE WITHIN 30' OF MOBILE HOME

5' MAX 4' MIN

18"

FOUR (4) WIRE-SEE NEC ARTICLE 550

METAL RACEWAY

18"

36"

20"

18"

20" FROST LOOP

DEPTH TO BE IN ACCORDANCE WITH NEC TABLE 300.5 & FIGURE 11.
CUSTOMER'S SERVICE POLE MORE THAN 30' FROM MOBILE HOME

SERVICE DROP FROM CENTRAL HUDSON

CUSTOMER OWNED POLE

CUSTOMER'S SERVICE ENTRANCE CABLE

METER

CUSTOMER'S SERVICE EQUIPMENT MOUNTED ON PEDESTAL

3 WIRE SEE NEC 230

FOUR (4) WIRE-SEE NEC ARTICLE 550

30' MAXIMUM

METAL RACEWAY

18"

18"

18"

18"

36"

20"

20" FROST LOOP

DEPTH TO BE IN ACCORDANCE WITH NEC TABLE 300.5 & FIGURE 11.

CENTRAL HUDSON GAS & ELECTRIC CORP.

TYPICAL METHODS OF SERVING A MOBILE HOME WITH DIRECT WIRING
MOBILE HOMES NOT IN A DEVELOPMENT OR PARK
DIRECT WIRED UNDERGROUND SERVICE FROM
ELEC. CO. OWNED POLE WITH METER AND
CUSTOMER’S SERVICE EQUIP.
MOUNTED ON A PEDESTAL

CENTRAL HUDSON
OWNED POLE

SEE FIG. 12 FOR UNDERGROUND SERVICE OFF
CENTRAL HUDSON POLE.

INSTALL PEDESTAL MIN 10’ FROM POLE.

METER AND CUSTOMER’S SERVICE EQUIPMENT
MOUNTED ON PEDESTAL

30’ MAXIMUM

5’ MAX
4’ MIN

18”

18”

18"

36”

20”

20” FROST LOOP

DEPTH TO BE IN ACCORDANCE WITH NEC
TABLE 300.5 & FIGURE 11.

CENTRAL HUDSON GAS & ELECTRIC CORP.

TYPICAL METHODS OF SERVING A MOBILE HOME WITH DIRECT WIRING
MOBILE HOMES NOT IN A DEVELOPMENT OR PARK

DATE 5-1-15

ISSUE

APP.

APP.

DO NOT REVERSE MANUALLY
8" DIAMETER, 3500 PSI CONCRETE ENCASEMENT
(PERMANENT INSTALLATION ONLY)
(TYPICAL)
INSTALLATION SPECIFICATIONS

1. PRESERVATIVE PRESSURE TREATED POLE (FURNISHED AND INSTALLED BY CUSTOMER). CONSULT COMPANY FOR POLE SIZE, SETTING, AND GUYING REQUIREMENTS.
2. SERVICE DROP FURNISHED AND INSTALLED BY COMPANY.
3. ELECTRICIAN TO LEAVE LEADS 36 INCHES MINIMUM IN LENGTH.
4. PRESERVATIVE PRESSURE TREATED POLE BUTTS OR PRESERVATIVE PRESSURE TREATED TIMBER.
5. METER SOCKETS FURNISHED AND INSTALLED BY CUSTOMER.
6. CABLE OR CONDUIT IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE.
7. BOARD. 3/4” EXTERIOR GRADE PLYWOOD OR EQUIVALENT PRESSURE TREATED LUMBER IN STRENGTH.
8. CUSTOMER’S PEDESTAL - 4”X4” PRESERVATIVE PRESSURE TREATED POST (TWO 2”X4” NOT ACCEPTABLE) OR EQUAL. SET A MIN. OF 4 FT. DEEP. (NOT REQUIRED FOR MOBILE HOMES IN SITE OF AND WITHIN 30’ OF METER SOCKETS).
9. CUSTOMER’S SERVICE EQUIPMENT IN WEATHERPROOF ENCLOSURE -4’0”MIN., 6’0” MAX.
10. HEIGHT ABOVE GROUND TO TOP OF METER ENCLOSURE - 4’0” MIN., 5’0” MAX. (NOT REQUIRED FOR MOBILE HOMES IN SITE OF AND WITHIN 30’ OF METER SOCKETS).
11. CUSTOMER’S SERVICE EQUIPMENT AS REQUIRED BY THE NATIONAL ELECTRICAL CODE.
12. CONTINUOUS SOFT DRAWN BARE COPPER GROUND WIRE UNDER PROTECTIVE COVER TERMINATED AT THE METER GROUND BUS CONNECTION. SIZE GROUND ACCORDING TO NEC ARTICLE 250.
13. ADDITIONAL SERVICE CONNECTIONS AS REQUIRED.
14. DEPTH TO BE IN ACCORDANCE WITH NEC TABLE 300.5 & FIGURE 11.
15. APPROVED DRIVEN GROUND RODS: 2 REQUIRED.

NOTES

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.
2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.
3. INSTALLATION AND EQUIPMENT RATINGS MUST BE ADEQUATE FOR THE LOAD TO BE CONNECTED. 200 AMPERE POSITIONS MAY REQUIRE A DIFFERENT ARRANGEMENT.
4. A MAXIMUM OF THREE (3) METERS BUSSED TOGETHER WHERE ALL MOBILE HOMES ARE ELECTRICALLY HEATED.
5. ALL 120 VOLT SINGLE PHASE UTILIZATION RECEPTACLE OUTLETS MUST HAVE APPROVED GROUND FAULT CIRCUIT PROTECTION. EXAMPLE: 15 OR 20 AMP. OUTLETS.
8" DIAMETER, 3500 PSI CONCRETE ENCASEMENT
(PERMANENT INSTALLATION ONLY)
(TYPICAL)
INSTALLATION SPECIFICATIONS

1. PRESERVATIVE PRESSURE TREATED POLE BUTTS OR PRESERVATIVE PRESSURE TREATED TIMBER SET BELOW FROST LEVEL. (4 FT. MINIMUM)
2. METER SOCKETS FURNISHED AND INSTALLED BY CUSTOMER.
3. BOARD - 3/4” EXTERIOR GRADE PLYWOOD OR EQUIVALENT PRESSURE TREATED LUMBER IN STRENGTH.
4. INSULATED GROUNDING BUSHING.
5. CUSTOMER’S PEDESTAL - 4”X4” PRESERVATIVE PRESSURE TREATED POST (TWO 2”X4” NOT ACCEPTABLE) OR EQUAL. SET A MIN. OF 4’ DEEP. (NOT REQUIRED FOR MOBILE HOMES IN SITE OF AND WITHIN 30’ OF METER SOCKETS)
6. CUSTOMER’S SERVICE EQUIPMENT IN WEATHERPROOF ENCLOSURE (100 AMP. MIN.: 150 AMP. RECOMMENDED).
7. HEIGHT ABOVE GROUND TO TOP OF METER ENCLOSURE - 4’0” MIN., 5’0” MAX.
8. CUSTOMER’S SERVICE EQUIPMENT ENCLOSURE AS REQUIRED BY THE NATIONAL ELECTRICAL CODE. (NOT REQUIRED FOR MOBILE HOMES IN SITE OF AND WITHIN 30’ OF METER SOCKETS).
9. SCHEDULE 80 PVC OR GALVANIZED STEEL CONDUIT - FURNISHED AND INSTALLED BY CUSTOMER.
10. CONTINUOUS SOFT DRAWN BARE COPPER UNDER PROTECTIVE COVER TERMINATED AT THE METER GROUND BUS CONNECTION. SIZE GROUND ACCORDING TO NEC ARTICLE 250.
11. ADDITIONAL SERVICE CONNECTIONS AS REQUIRED.
12. DEPTH TO BE IN ACCORDANCE WITH NEC TABLE 300.5 & FIGURE 11.
13. APPROVED DRIVEN GROUND RODS - 2 REQUIRED.
14. INSULATING BUSHING FURNISHED AND INSTALLED BY CUSTOMER.
15. CABLE BY CUSTOMER.

NOTES

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.
2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.
3. INSTALLATION AND EQUIPMENT RATINGS MUST BE ADEQUATE FOR THE LOAD TO BE CONNECTED. 200 AMPERE POSITIONS MAY REQUIRE A DIFFERENT ARRANGEMENT.
4. A MAXIMUM OF THREE (3) METERS BUSSED TOGETHER WHERE ALL MOBILE HOMES ARE ELECTRICALLY HEATED.
5. ALL 120 VOLT SINGLE PHASE UTILIZATION RECEPTACLE OUTLETS MUST HAVE APPROVED GROUND FAULT CIRCUIT PROTECTION. EXAMPLE: 15 OR 20 AMP.

ELECTRIC STANDARDS	CENTRAL HUDSON GAS & ELECTRIC CORP.	DATE 5-1-15
DRWN. _____ | MOBILE HOME MULTI-METER INSTALLATION UNDERGROUND SERVICE | ISSUE
DSGN. _____ | | APP.
APPD. _____ | | APP.
NOTES:

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. CONNECTIONS ARE FOR SINGLE PHASE 3 WIRE 120/240 VOLTS. CONSULT WITH CENTRAL HUDSON FOR CONNECTIONS APPLICABLE TO OTHER SERVICE TYPES.
METHOD 1: PREFERRED METHOD

REPLACE LINE SIDE CONDUCTORS BY PROVIDING LOOP AS SHOWN

EXISTING METER SOCKET

LOAD SIDE WIRING TO REMAIN AS IS. VERIFY INTEGRITY OF LUG CONNECTIONS.

2" SCH. 80 PVC OR GALV. STEEL CONDUIT

PROVIDE AND INSTALL NEW SECTION 2-4/0 AWG. 1-2/0 AWG NEU.

PROVIDE STRESS-FREE SPLICE; ROUTE CONDUCTORS AS SHOWN TO PREVENT FROST STRESS.

2" SCH. 80 PVC OR GALV. STEEL CONDUIT. REMOVE SLEEP SECTION AND PROVIDE STRAIGHT SECTION WITH BUSHING.

1'-0" MIN. (SEE NOTE 1)

GRADE

EXISTING CABLE

18"

20"

PROVIDE BUSHING

CENTRAL HUDSON GAS & ELECTRIC CORP.

DATE 5-1-15

UNDERGROUND SERVICE FROST LOOP REPAIR
(SINGLE PHASE RESIDENTIAL SERVICE; 200 AMPS, 300 VOLTS OR LESS)
METHOD 2: ALTERNATE METHOD - ONE CONDUCTOR DAMAGED ONLY

NOTES REFER TO METHOD 2 INSTALLATION NOTES OF SHEET 3

NEW CONDUCTOR (MATCH EXISTING)

CUT BACK EXISTING DAMAGED CABLE TO SUITABLE LOCATION AND SPLICE CABLE WITH MATCHING CONDUCTOR SIZE/MATERIAL. CONNECT NEW CONDUCTOR TO LINE SIDE TAPS.

GROUNDED CONDUCTOR (NEUTRAL)

EXISTING CONDUCTOR

LINE SIDE

LOAD SIDE

CENTRAL HUDSON GAS & ELECTRIC CORP.

UNDERGROUND SERVICE FROST LOOP REPAIR
(SINGLE PHASE RESIDENTIAL SERVICES, 200 AMPS, 300 VOLS OR LESS)
GENERAL NOTES (SHEETS 1 AND 2)

1. ALL INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS CONTAINED HEREBIN, THE NEC, AND ALL APPLICABLE CODES AND STANDARDS.

2. ALL INSTALLATIONS SHALL BE INSPECTED BY THE AUTHORITY HAVING JURISDICTION.

3. THE DRAWINGS ON SHEETS 1 & 2 PROVIDE A METHOD TO CORRECT FROST STRESS PROBLEMS WHICH MAY ARISE DUE TO THE ABSENCE OF A FROST LOOP IN THE UNDERGROUND FEEDER. METER SOCKETS WHICH HAVE BEEN PULLED FREE FROM THE WALL SHOULD BE IMMEDIATELY RETROFITTED.

4. LOOP LINE CONDUCTORS ON ALL UNDERGROUND SERVICES 1Φ AND 3Φ (SINGLE PHASE SHOWN).

METHOD 1 INSTALLATION NOTES (SHEET 1)

1. PROVIDE A MINIMUM OF A 12"X12"X4" WEATHERPROOF SPLICE BOX (NEMA 3R). MOUNT BOX AS HIGH AS POSSIBLE OFF THE GROUND TO PREVENT EXCESSIVE EXPOSURE TO MOISTURE. IF PHYSICAL RESTRICTIONS PREVENT 1'-0" MOUNTING THEN A REDUCTION IN THIS MOUNTING HEIGHT IS PERMISSIBLE. BOX SHALL BE EQUIPPED WITH THE CAPABILITY OF BEING LOCKED.

2. PROVIDE STRESS BEND IN SPLICE BOX AS SHOWN. MAKE SURE THAT SPLICE IS NOT SUBJECTED TO EXCESSIVE STRESS. THIS WIRE CONFIGURATION IN CONJUNCTION WITH THE METER SOCKET LOOP SHOULD PROVIDE ENOUGH SLACK TO PREVENT STRESS DAMAGE FROM FROST.

3. IF SPLICE BOX IS MANUFACTURED FROM A CONDUCTIVE MATERIAL SUCH AS STEEL OR ALUMINUM THERE SHOULD BE A MINIMUM OF A STRANDED BARE #6 AWG CONDUCTORCONNECTING THE ENCLOSURE TO THE GROUND POINT IN THE METER SOCKET. ALL NON-CONDUCTIVE ENCLOSURES DO NOT REQUIRE THIS CONNECTION.

4. IF EXISTING INSTALLATION HAS 90 DEGREE BEND IN CONDUIT UNDERGROUND, REMOVE SWEEP AND PROVIDE STRAIGHT SECTION AS SHOWN. FINAL CONFIGURATION TO BE AS SHOWN ON SHEET 1.

METHOD 2 INSTALLATION NOTES (SHEET 2)

1. THE TOTAL AREA OF ALL CONDUCTORS, SPLICES, AND TAPS INSTALLED SHALL NOT EXCEED 75% OF THE CROSS-SECTIONAL AREA OF THAT SPACE. IF IT DOES, METHOD 1 MUST BE IMPLEMENTED.

2. ALL SPLICES MUST HAVE NON-CONDUCTING COVER OR BE SUFFICIENTLY TAPED TO PREVENT CONTACT OF CONDUCTING PARTS TO METER SOCKET ENCLOSURE AND ANY COMPONENTS. ALL SPLICES MUST BE SERVICE ENTRANCE RATED (EX. BURNDY TYPE YSD). NO BOLT SPLICES ARE ALLOWED.
NOTES:

1. TWO #10 OUTDOOR INSULATED STRANDED COPPER LEADS. CUSTOMER TO INSTALL IN CONDUIT COMPLETE WITH SUFFICIENT EXCESS CONDUCTOR COILED AT TOP OF CONDUIT TO REACH SECONDARY. TOP OF CONDUIT TO BE TEMPORARILY SEALED TO KEEP MOISTURE OUT. CONNECTION TO SECONDARY TO BE MADE BY CENTRAL HUDSON ONLY.

2. CUSTOMER TO PROVIDE 1" CLAMP TYPE WEATHER HEAD AND 1" SCHEDULE 40 RIGID NONMETALLIC CONDUIT. CENTRAL HUDSON TO INSTALL.

3. CUSTOMER TO INSTALL 1" SCHEDULE 40 RIGID NONMETALLIC CONDUIT AND ADAPTER TO 40" FROM SECONDARY.

4. CONDUIT STRAPS AT NO MORE THAN 4' INTERVALS.

5. LOCKABLE WEATHERPROOF ENCLOSURE (NEMA 3R) WITH 1-20 AMP SINGLE POLE BREAKER WITH HIGH INTERRUPTING CAPACITY (22K AIC MIN.). ENCLOSURE SHALL BE BONDED TO POLE DOWN GROUND WHEN AVAILABLE OR GROUNDED PER THE NATIONAL ELECTRICAL CODE. CENTRAL HUDSON CONTROL UNIT (30-15-49E) WITH APPROPRIATE TWIST LOCK PHOTOCELL MAY BE USED IN LIEU OF THIS ASSEMBLY FOR DECORATIVE LIGHTING.

6. WEATHERPROOF, GROUND-FAULT CIRCUIT-INTERUPTER. CONVENIENCE OUTLET 120V-20A SINGLE RECEPTACLE FACING DOWN.

7. ALL INSTALLATIONS SHALL REQUIRE PRIOR APPROVAL FROM CENTRAL HUDSON.

ELECTRIC STANDARDS

<table>
<thead>
<tr>
<th>DRWN.</th>
<th>CLEAR</th>
<th>ENGR.</th>
<th>APPD.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTRAL HUDSON GAS & ELECTRIC CORP.

DATE 5-1-15

ISSUE

APP.

APP.

INSTALLATION OF CONVENIENCE OUTLET ON DISTRIBUTION POLE WITH SECONDARY FOR DECORATIVE LIGHTING AND OTHER SMALL 120V LOADS

CARTOON DRAWING

DO NOT REVISE MANUALLY
Electrical Inspections Are
A Vital Public Safety Function

Inspections Can Save Lives and Property. Inspections by qualified electrical inspectors reduce the potential for fire and shock hazards due to improperly selected, applied or installed electrical products. Ensuring that equipment covered by the National Electrical Code® is properly selected, applied, and installed reduces shock and electrocution accidents and reduces property damage resulting from unsafe electrical installations.

Inspections Mean Compliance with Laws. To protect public safety, most states and localities require electrical installations to comply with the National Electrical Code®. Electrical inspections help confirm that electrical wiring and systems are installed according to Code and manufacturer’s instructions.

Inspections Check for Safe Products. Most states and localities require electrical products to be listed by a recognized product safety certification organization. Electrical inspectors help confirm that properly certified products meeting U.S. safety standards are installed.

Inspections Confirm that Qualified Installers are on the Job. Uniform adoption of the latest edition of the NEC provides for consistency of code requirements across jurisdictions thereby facilitating standardization of installer training, proper installation, and ease of use by inspectors in evaluating the safety of the installation.

No Public Funding. Government funding isn’t needed to pay for proper and thorough electrical inspections. The cost of inspections is usually covered by fees paid directly by installers. This vital public safety function doesn’t have to cost taxpayers or cash-strapped governments a dime!

Inspections Can Help Lower Insurance Premiums. Property insurance premiums are generally lower in areas with strong building codes enforced by professional inspectors. That’s because qualified electrical inspectors help protect lives and property.

The Electrical Code Coalition: An Industry Coalition Supporting Qualified Electrical Inspectors

Brett Brenner, President
Electrical Safety Foundation Intl. (ESFI)
Central Hudson’s Electric Service Area